These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

624 related articles for article (PubMed ID: 19690707)

  • 41. Synthetically directed self-assembly and enhanced surface-enhanced Raman scattering property of twinned crystalline Ag/Ag homojunction nanoparticles.
    Feng X; Ruan F; Hong R; Ye J; Hu J; Hu G; Yang Z
    Langmuir; 2011 Mar; 27(6):2204-10. PubMed ID: 21323368
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Self-assembled dynamics of silver nanoparticles and self-assembled dynamics of 1,4-benzenedithiol adsorbed on silver nanoparticles: Surface-enhanced Raman scattering study.
    Sun M; Xia L; Chen M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Oct; 74(2):509-14. PubMed ID: 19632144
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Atomic force microscopy and surface-enhanced Raman scattering detection of DNA based on DNA-nanoparticle complexes.
    Sun L; Sun Y; Xu F; Zhang Y; Yang T; Guo C; Liu Z; Li Z
    Nanotechnology; 2009 Mar; 20(12):125502. PubMed ID: 19420468
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Paper surfaces functionalized by nanoparticles.
    Ngo YH; Li D; Simon GP; Garnier G
    Adv Colloid Interface Sci; 2011 Mar; 163(1):23-38. PubMed ID: 21324427
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface-enhanced Raman scattering of 5-fluorouracil adsorbed on silver nanostructures.
    Sardo M; Ruano C; Castro JL; López-Tocón I; Soto J; Ribeiro-Claro P; Otero JC
    Phys Chem Chem Phys; 2009 Sep; 11(34):7437-43. PubMed ID: 19690716
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fungal based synthesis of silver nanoparticles--an effect of temperature on the size of particles.
    Mohammed Fayaz A; Balaji K; Kalaichelvan PT; Venkatesan R
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):123-6. PubMed ID: 19674875
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tailoring plasmonic substrates for surface enhanced spectroscopies.
    Lal S; Grady NK; Kundu J; Levin CS; Lassiter JB; Halas NJ
    Chem Soc Rev; 2008 May; 37(5):898-911. PubMed ID: 18443675
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adsorption of a cholesteric liquid crystal polyester on silver nanoparticles studied by surface-enhanced Raman scattering and micro Raman spectroscopy.
    Pérez-Méndez M; Marsal-Berenguel R; Sanchez-Cortes S
    Appl Spectrosc; 2004 May; 58(5):562-9. PubMed ID: 15165333
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity.
    Garcia-Leis A; Torreggiani A; Garcia-Ramos JV; Sanchez-Cortes S
    Nanoscale; 2015 Aug; 7(32):13629-37. PubMed ID: 26206266
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tunable near-infrared optical properties of three-layered metal nanoshells.
    Wu D; Xu X; Liu X
    J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array.
    Feng F; Zhi G; Jia HS; Cheng L; Tian YT; Li XJ
    Nanotechnology; 2009 Jul; 20(29):295501. PubMed ID: 19567965
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing.
    Andrade GF; Fan M; Brolo AG
    Biosens Bioelectron; 2010 Jun; 25(10):2270-5. PubMed ID: 20353887
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasmon-based nanolenses assembled on a well-defined DNA template.
    Bidault S; Abajo FJ; Polman A
    J Am Chem Soc; 2008 Mar; 130(9):2750-1. PubMed ID: 18266376
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation of a SERS substrate and its sample-loading method for point-of-use application.
    Fang C; Agarwal A; Ji H; Karen WY; Yobas L
    Nanotechnology; 2009 Oct; 20(40):405604. PubMed ID: 19738294
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Methods for describing the electromagnetic properties of silver and gold nanoparticles.
    Zhao J; Pinchuk AO; McMahon JM; Li S; Ausman LK; Atkinson AL; Schatz GC
    Acc Chem Res; 2008 Dec; 41(12):1710-20. PubMed ID: 18712883
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Substrates with discretely immobilized silver nanoparticles for ultrasensitive detection of anions in water using surface-enhanced Raman scattering.
    Tan S; Erol M; Sukhishvili S; Du H
    Langmuir; 2008 May; 24(9):4765-71. PubMed ID: 18376892
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass.
    Wang Y; Chen H; Dong S; Wang E
    J Chem Phys; 2006 Feb; 124(7):74709. PubMed ID: 16497072
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adsorption-desorption study of BSA conjugated silver nanoparticles (Ag/BSA NPs) on collagen immobilized substrates.
    Bhan C; Mandlewala R; Gebregeorgis A; Raghavan D
    Langmuir; 2012 Dec; 28(49):17043-52. PubMed ID: 23151257
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sensitive and selective localized surface plasmon resonance light-scattering sensor for Ag+ with unmodified gold nanoparticles.
    Wu C; Xiong C; Wang L; Lan C; Ling L
    Analyst; 2010 Oct; 135(10):2682-7. PubMed ID: 20820488
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays.
    Dai ZG; Xiao XH; Zhang YP; Ren F; Wu W; Zhang SF; Zhou J; Mei F; Jiang CZ
    Nanotechnology; 2012 Aug; 23(33):335701. PubMed ID: 22842646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.