BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19691121)

  • 1. Influence of different magnetites on properties of magnetic Pseudomonas aeruginosa immobilizates used for biosurfactant production.
    Heyd M; Weigold P; Franzreb M; Berensmeier S
    Biotechnol Prog; 2009; 25(6):1620-9. PubMed ID: 19691121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous rhamnolipid production with integrated product removal by foam fractionation and magnetic separation of immobilized Pseudomonas aeruginosa.
    Heyd M; Franzreb M; Berensmeier S
    Biotechnol Prog; 2011; 27(3):706-16. PubMed ID: 21567991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosurfactant production by free and alginate entrapped cells of Pseudomonas fluorescens.
    Abouseoud M; Yataghene A; Amrane A; Maachi R
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1303-8. PubMed ID: 18712561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of Dopants on the Effectiveness of Alginate Beads in Immobilized Cell Reactors.
    Nordmeier A; Chidambaram D
    Appl Biochem Biotechnol; 2016 Apr; 178(8):1503-9. PubMed ID: 26707587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of Bacillus amyloliquefaciens MBL27 cells for enhanced antimicrobial protein production using calcium alginate beads.
    Kumaravel V; Gopal SR
    Biotechnol Appl Biochem; 2010 Dec; 57(3):97-103. PubMed ID: 21044046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture.
    Camilios Neto D; Meira JA; de Araújo JM; Mitchell DA; Krieger N
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):441-8. PubMed ID: 18766338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous rhamnolipid production using denitrifying Pseudomonas aeruginosa cells in hollow-fiber bioreactor.
    Pinzon NM; Cook AG; Ju LK
    Biotechnol Prog; 2013; 29(2):352-8. PubMed ID: 23359613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R.
    Kumar CG; Mamidyala SK; Sujitha P; Muluka H; Akkenapally S
    Biotechnol Prog; 2012; 28(6):1507-16. PubMed ID: 22961871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entrapment of DyP-type peroxidase from Pseudomonas fluorescens Pf-5 into Ca-alginate magnetic beads.
    Wasak A; Drozd R; Struk Ł; Grygorcewicz B
    Biotechnol Appl Biochem; 2018 Mar; 65(2):238-245. PubMed ID: 28326617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and concentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa SP4 using foam fractionation.
    Sarachat T; Pornsunthorntawee O; Chavadej S; Rujiravanit R
    Bioresour Technol; 2010 Jan; 101(1):324-30. PubMed ID: 19716289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulation of cells in alginate gels.
    Sánchez P; Hernández RM; Pedraz JL; Orive G
    Methods Mol Biol; 2013; 1051():313-25. PubMed ID: 23934814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of immobilization parameters on growth and lactic acid production by Streptococcus thermophilus and Lactobacillus bulgaricus co-immobilized in calcium alginate gel beads.
    Garbayo I; Vílchez C; Vega JM; Nava-Saucedo JE; Barbotin JN
    Biotechnol Lett; 2004 Dec; 26(23):1825-7. PubMed ID: 15672222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells.
    Bagheri Lotfabad T; Ebadipour N; Roostaazad R; Partovi M; Bahmaei M
    Colloids Surf B Biointerfaces; 2017 Apr; 152():159-168. PubMed ID: 28110037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of naringinase in PVA-alginate matrix using an innovative technique.
    Nunes MA; Vila-Real H; Fernandes PC; Ribeiro MH
    Appl Biochem Biotechnol; 2010 Apr; 160(7):2129-47. PubMed ID: 19690984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa.
    Sotirova A; Spasova D; Vasileva-Tonkova E; Galabova D
    Microbiol Res; 2009; 164(3):297-303. PubMed ID: 17416508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation.
    Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of rhamnolipids in solid-state cultivation: Characterization, downstream processing and application in the cleaning of contaminated soils.
    Camilios Neto D; Meira JA; Tiburtius E; Zamora PP; Bugay C; Mitchell DA; Krieger N
    Biotechnol J; 2009 May; 4(5):748-55. PubMed ID: 19452471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI.
    Nitschke M; Costa SG; Haddad R; Gonçalves LA; Eberlin MN; Contiero J
    Biotechnol Prog; 2005; 21(5):1562-6. PubMed ID: 16209563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhamnolipid-biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains.
    Sotirova AV; Spasova DI; Galabova DN; Karpenko E; Shulga A
    Curr Microbiol; 2008 Jun; 56(6):639-44. PubMed ID: 18330632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol.
    Saikia RR; Deka S; Deka M; Sarma H
    J Basic Microbiol; 2012 Aug; 52(4):446-57. PubMed ID: 22144225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.