These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19691313)

  • 1. Direct versus hydrogen-assisted CO dissociation.
    Shetty S; Jansen AP; van Santen RA
    J Am Chem Soc; 2009 Sep; 131(36):12874-5. PubMed ID: 19691313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen induced CO activation on open Ru and Co surfaces.
    Shetty S; van Santen RA
    Phys Chem Chem Phys; 2010 Jun; 12(24):6330-2. PubMed ID: 20532417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site regeneration in the Fischer-Tropsch synthesis reaction: a synchronized CO dissociation and C-C coupling pathway.
    Shetty SG; Ciobîcă IM; Hensen EJ; van Santen RA
    Chem Commun (Camb); 2011 Sep; 47(35):9822-4. PubMed ID: 21818499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new insight into the initial step in the Fischer-Tropsch synthesis: CO dissociation on Ru surfaces.
    Li H; Fu G; Xu X
    Phys Chem Chem Phys; 2012 Dec; 14(48):16686-94. PubMed ID: 23131901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of electrophilic species in the Fischer-Tropsch reaction.
    Maitlis PM; Zanotti V
    Chem Commun (Camb); 2009 Apr; (13):1619-34. PubMed ID: 19294244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct versus hydrogen-assisted CO dissociation on the Fe (100) surface: a DFT study.
    Elahifard MR; Jigato MP; Niemantsverdriet JW
    Chemphyschem; 2012 Jan; 13(1):89-91. PubMed ID: 22147562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H
    Zhang S; Wang K; He F; Gao X; Fan S; Ma Q; Zhao T; Zhang J
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO chemisorption and dissociation at high coverages during CO hydrogenation on Ru catalysts.
    Loveless BT; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2013 Apr; 135(16):6107-21. PubMed ID: 23480097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the Fischer-Tropsch mechanism: a combined DFT and microkinetic investigation of C-C bond formation on Ru.
    Mirwald JW; Inderwildi OR
    Phys Chem Chem Phys; 2012 May; 14(19):7028-31. PubMed ID: 22482113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption and activation of CO over flat and stepped Co surfaces: a first principles analysis.
    Ge Q; Neurock M
    J Phys Chem B; 2006 Aug; 110(31):15368-80. PubMed ID: 16884257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of selectivity switch in Fischer-Tropsch synthesis over Ru and Rh from first-principles statistical mechanics studies.
    Chen J; Liu ZP
    J Am Chem Soc; 2008 Jun; 130(25):7929-37. PubMed ID: 18507384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering ZrO
    Yu H; Wang C; Xin X; Wei Y; Li S; An Y; Sun F; Lin T; Zhong L
    Nat Commun; 2024 Jun; 15(1):5143. PubMed ID: 38886352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A DFT study of the adsorption and dissociation of CO on sulfur-precovered Fe100.
    Curulla-Ferré D; Govender A; Bromfield TC; Niemantsverdriet JW
    J Phys Chem B; 2006 Jul; 110(28):13897-904. PubMed ID: 16836339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the C(3P) + OH(X2Pi) --> CO(X1Sigma(g)+) + H(2S) reaction: a fully global ab initio potential energy surface of the X2A' state.
    Zanchet A; Bussery-Honvault B; Honvault P
    J Phys Chem A; 2006 Nov; 110(43):12017-25. PubMed ID: 17064191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms for disilane chemisorption on Si(100)-(2 x 1).
    Ng RQ; Tok ES; Kang HC
    J Chem Phys; 2009 Mar; 130(11):114702. PubMed ID: 19317550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen.
    Alayoglu S; Nilekar AU; Mavrikakis M; Eichhorn B
    Nat Mater; 2008 Apr; 7(4):333-8. PubMed ID: 18345004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen Dissociation, Spillover, and Desorption from Cu-Supported Co Nanoparticles.
    Lewis EA; Marcinkowski MD; Murphy CJ; Liriano ML; Sykes EC
    J Phys Chem Lett; 2014 Oct; 5(19):3380-5. PubMed ID: 26278448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism and microkinetics of the Fischer-Tropsch reaction.
    van Santen RA; Markvoort AJ; Filot IA; Ghouri MM; Hensen EJ
    Phys Chem Chem Phys; 2013 Oct; 15(40):17038-63. PubMed ID: 24030478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrocarbon oxidation by beta-halogenated dioxoruthenium(VI) porphyrin complexes: effect of reduction potential (RuVI/V) and C-H bond-dissociation energy on rate constants.
    Che CM; Zhang JL; Zhang R; Huang JS; Lai TS; Tsui WM; Zhou XG; Zhou ZY; Zhu N; Chang CK
    Chemistry; 2005 Nov; 11(23):7040-53. PubMed ID: 16163758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.