BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 19691428)

  • 21. Thioredoxin: a key regulator of cardiovascular homeostasis.
    Yamawaki H; Haendeler J; Berk BC
    Circ Res; 2003 Nov; 93(11):1029-33. PubMed ID: 14645133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glutaredoxin-1 mediates NADPH-dependent stimulation of calcium-dependent insulin secretion.
    Reinbothe TM; Ivarsson R; Li DQ; Niazi O; Jing X; Zhang E; Stenson L; Bryborn U; Renström E
    Mol Endocrinol; 2009 Jun; 23(6):893-900. PubMed ID: 19299446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The crystal structure of Mycobacterium tuberculosis NrdH at 0.87 Å suggests a possible mode of its activity.
    Phulera S; Mande SC
    Biochemistry; 2013 Jun; 52(23):4056-65. PubMed ID: 23675692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specificity of thioredoxins and glutaredoxins as electron donors to two distinct classes of Arabidopsis plastidial methionine sulfoxide reductases B.
    Vieira Dos Santos C; Laugier E; Tarrago L; Massot V; Issakidis-Bourguet E; Rouhier N; Rey P
    FEBS Lett; 2007 Sep; 581(23):4371-6. PubMed ID: 17761174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of thiol-dependent redox system by metal ions via thioredoxin and glutaredoxin systems.
    Ouyang Y; Peng Y; Li J; Holmgren A; Lu J
    Metallomics; 2018 Feb; 10(2):218-228. PubMed ID: 29410996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methylglyoxal causes dysfunction of thioredoxin and thioredoxin reductase in endothelial cells.
    Tatsunami R; Oba T; Takahashi K; Tampo Y
    J Pharmacol Sci; 2009 Dec; 111(4):426-32. PubMed ID: 19966511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae.
    Trotter EW; Grant CM
    Eukaryot Cell; 2005 Feb; 4(2):392-400. PubMed ID: 15701801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of the glutaredoxin and thioredoxin systems and ribonucleotide reductase by mutant p53-targeting compound APR-246.
    Haffo L; Lu J; Bykov VJN; Martin SS; Ren X; Coppo L; Wiman KG; Holmgren A
    Sci Rep; 2018 Aug; 8(1):12671. PubMed ID: 30140002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox regulation of metabolic and signaling pathways by thioredoxin and glutaredoxin in NOS-3 overexpressing hepatoblastoma cells.
    González R; López-Grueso MJ; Muntané J; Bárcena JA; Padilla CA
    Redox Biol; 2015 Dec; 6():122-134. PubMed ID: 26210445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nuclear thiol redox systems in plants.
    Delorme-Hinoux V; Bangash SA; Meyer AJ; Reichheld JP
    Plant Sci; 2016 Feb; 243():84-95. PubMed ID: 26795153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thiol redox control via thioredoxin and glutaredoxin systems.
    Holmgren A; Johansson C; Berndt C; Lönn ME; Hudemann C; Lillig CH
    Biochem Soc Trans; 2005 Dec; 33(Pt 6):1375-7. PubMed ID: 16246122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins.
    Foloppe N; Sagemark J; Nordstrand K; Berndt KD; Nilsson L
    J Mol Biol; 2001 Jul; 310(2):449-70. PubMed ID: 11428900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox regulation: a broadening horizon.
    Buchanan BB; Balmer Y
    Annu Rev Plant Biol; 2005; 56():187-220. PubMed ID: 15862094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thioredoxin and glutaredoxin system proteins-immunolocalization in the rat central nervous system.
    Aon-Bertolino ML; Romero JI; Galeano P; Holubiec M; Badorrey MS; Saraceno GE; Hanschmann EM; Lillig CH; Capani F
    Biochim Biophys Acta; 2011 Jan; 1810(1):93-110. PubMed ID: 20620191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymes or redox couples? The kinetics of thioredoxin and glutaredoxin reactions in a systems biology context.
    Pillay CS; Hofmeyr JH; Olivier BG; Snoep JL; Rohwer JM
    Biochem J; 2009 Jan; 417(1):269-75. PubMed ID: 18694397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comprehensive study of thiol reduction gene expression under stress conditions in Arabidopsis thaliana.
    Belin C; Bashandy T; Cela J; Delorme-Hinoux V; Riondet C; Reichheld JP
    Plant Cell Environ; 2015 Feb; 38(2):299-314. PubMed ID: 24428628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets.
    König J; Muthuramalingam M; Dietz KJ
    Curr Opin Plant Biol; 2012 Jun; 15(3):261-8. PubMed ID: 22226570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential expression of glutaredoxin and thioredoxin during monocytic differentiation.
    Takashima Y; Hirota K; Nakamura H; Nakamura T; Akiyama K; Cheng FS; Maeda M; Yodoi J
    Immunol Lett; 1999 Jun; 68(2-3):397-401. PubMed ID: 10424449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding specificity and mechanistic insight into glutaredoxin-catalyzed protein disulfide reduction.
    Berardi MJ; Bushweller JH
    J Mol Biol; 1999 Sep; 292(1):151-61. PubMed ID: 10493864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches.
    López-Grueso MJ; González-Ojeda R; Requejo-Aguilar R; McDonagh B; Fuentes-Almagro CA; Muntané J; Bárcena JA; Padilla CA
    Redox Biol; 2019 Feb; 21():101049. PubMed ID: 30639960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.