These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19692235)

  • 41. Two possible pathways for the release of arsenic during pyrolysis of chromated copper arsenate (CCA)-treated wood.
    Kakitani T; Hata T; Kajimoto T; Imamura Y
    J Hazard Mater; 2004 Sep; 113(1-3):247-52. PubMed ID: 15363538
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum.
    Evangelou MW; Bauer U; Ebel M; Schaeffer A
    Chemosphere; 2007 Jun; 68(2):345-53. PubMed ID: 17280708
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of pressure treated wood impact on landfill waste decomposition using a methane yield assay.
    Kim H; Townsend T
    Chemosphere; 2007 Apr; 67(6):1252-7. PubMed ID: 17234241
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vivo percutaneous absorption of arsenic from water and CCA-treated wood residue.
    Wester RC; Hui X; Barbadillo S; Maibach HI; Lowney YW; Schoof RA; Holm SE; Ruby MV
    Toxicol Sci; 2004 Jun; 79(2):287-95. PubMed ID: 15056813
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant.
    Helsen L; Hacala A
    J Hazard Mater; 2006 Oct; 137(3):1438-52. PubMed ID: 16737775
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Implication of chromium speciation on disposal of discarded CCA-treated wood.
    Song J; Dubey B; Jang YC; Townsend T; Solo-Gabriele H
    J Hazard Mater; 2006 Feb; 128(2-3):280-8. PubMed ID: 16165268
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrolytic arsenic removal for recycling of washing solutions in a remediation process of CCA-treated wood.
    Nanseu-Njiki CP; Alonzo V; Bartak D; Ngameni E; Darchen A
    Sci Total Environ; 2007 Oct; 384(1-3):48-54. PubMed ID: 17588644
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improving the efficiency of metal removal from CCA-treated wood using brown rot fungi.
    Kim GH; Choi YS; Kim JJ
    Environ Technol; 2009 Jun; 30(7):673-9. PubMed ID: 19705604
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A pilot study of children's exposure to CCA-treated wood from playground equipment.
    Shalat SL; Solo-Gabriele HM; Fleming LE; Buckley BT; Black K; Jimenez M; Shibata T; Durbin M; Graygo J; Stephan W; Van De Bogart G
    Sci Total Environ; 2006 Aug; 367(1):80-8. PubMed ID: 16487576
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Arsenic levels in wipe samples collected from play structures constructed with CCA-treated wood: impact on exposure estimates.
    Barraj LM; Scrafford CG; Eaton WC; Rogers RE; Jeng CJ
    Sci Total Environ; 2009 Apr; 407(8):2586-92. PubMed ID: 19217647
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydroxyiminodisuccinic acid (HIDS): A novel biodegradable chelating ligand for the increase of iron bioavailability and arsenic phytoextraction.
    Rahman MA; Hasegawa H; Kadohashi K; Maki T; Ueda K
    Chemosphere; 2009 Sep; 77(2):207-13. PubMed ID: 19665755
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extraction of hexavalent chromium from chromated copper arsenate treated wood under alkaline conditions.
    Radivojevic S; Cooper PA
    Environ Sci Technol; 2008 May; 42(10):3739-44. PubMed ID: 18546716
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimization of a chemical leaching process for decontamination of CCA-treated wood.
    Janin A; Blais JF; Mercier G; Drogui P
    J Hazard Mater; 2009 Sep; 169(1-3):136-45. PubMed ID: 19362776
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characteristics of chromated copper arsenate-treated wood ash.
    Solo-Gabriele HM; Townsend TG; Messick B; Calitu V
    J Hazard Mater; 2002 Jan; 89(2-3):213-32. PubMed ID: 11744206
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of liquefaction time and temperature on heavy metal removal and distribution in liquefied CCA-treated wood sludge.
    Pan H
    Chemosphere; 2010 Jun; 80(4):438-44. PubMed ID: 20462629
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Leaching of copper, chromium and arsenic from treated vineyard posts in Marlborough, New Zealand.
    Robinson B; Greven M; Green S; Sivakumaran S; Davidson P; Clothier B
    Sci Total Environ; 2006 Jul; 364(1-3):113-23. PubMed ID: 16150477
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluating the potential for environmental pollution from chromated copper arsenate (CCA)-treated wood waste: a new mass balance approach.
    Mercer TG; Frostick LE
    J Hazard Mater; 2014 Jul; 276():10-8. PubMed ID: 24858049
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of a strong CCA-treated wood degrader, unknown Crustoderma species.
    Choi YS; Kim GH; Lim YW; Kim SH; Imamura Y; Yoshimura T; Kim JJ
    Antonie Van Leeuwenhoek; 2009 Mar; 95(3):285-93. PubMed ID: 19205919
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrokinetic remediation of wood preservative contaminated soil containing copper, chromium, and arsenic.
    Buchireddy PR; Bricka RM; Gent DB
    J Hazard Mater; 2009 Feb; 162(1):490-7. PubMed ID: 18599200
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ethyl lactate enhances ethylenediaminedisuccinic acid solution removal of copper from contaminated soils.
    Guo H; Wang W; Sun Y; Li H; Ai F; Xie L; Wang X
    J Hazard Mater; 2010 Feb; 174(1-3):59-63. PubMed ID: 19783092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.