BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19692335)

  • 1. Structural characterization of the ectodomain of a disintegrin and metalloproteinase-22 (ADAM22), a neural adhesion receptor instead of metalloproteinase: insights on ADAM function.
    Liu H; Shim AH; He X
    J Biol Chem; 2009 Oct; 284(42):29077-86. PubMed ID: 19692335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression, purification and insights into structure and folding of the ADAM22 pro domain.
    Sørensen HP; Jacobsen J; Nielbo S; Poulsen FM; Wewer UM
    Protein Expr Purif; 2008 Oct; 61(2):175-83. PubMed ID: 18593599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Disintegrin and Metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) family in vascular biology and disease.
    Zhong S; Khalil RA
    Biochem Pharmacol; 2019 Jun; 164():188-204. PubMed ID: 30905657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Biochemistry and Physiology of A Disintegrin and Metalloproteinases (ADAMs and ADAM-TSs) in Human Pathologies.
    Sharma D; Singh NK
    Rev Physiol Biochem Pharmacol; 2023; 184():69-120. PubMed ID: 35061104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ADAM metalloproteinases.
    Edwards DR; Handsley MM; Pennington CJ
    Mol Aspects Med; 2008 Oct; 29(5):258-89. PubMed ID: 18762209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (Make) stick and cut loose--disintegrin metalloproteases in development and disease.
    Tousseyn T; Jorissen E; Reiss K; Hartmann D
    Birth Defects Res C Embryo Today; 2006 Mar; 78(1):24-46. PubMed ID: 16622847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metalloproteinase-like, disintegrin-like, cysteine-rich proteins MDC2 and MDC3: novel human cellular disintegrins highly expressed in the brain.
    Sagane K; Ohya Y; Hasegawa Y; Tanaka I
    Biochem J; 1998 Aug; 334 ( Pt 1)(Pt 1):93-8. PubMed ID: 9693107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains.
    Gerhardt S; Hassall G; Hawtin P; McCall E; Flavell L; Minshull C; Hargreaves D; Ting A; Pauptit RA; Parker AE; Abbott WM
    J Mol Biol; 2007 Nov; 373(4):891-902. PubMed ID: 17897672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview.
    Takeda S
    Toxins (Basel); 2016 May; 8(5):. PubMed ID: 27196928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of VAP1 reveal ADAMs' MDC domain architecture and its unique C-shaped scaffold.
    Takeda S; Igarashi T; Mori H; Araki S
    EMBO J; 2006 Jun; 25(11):2388-96. PubMed ID: 16688218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functions of 'A disintegrin and metalloproteases (ADAMs)' in the mammalian nervous system.
    Hsia HE; Tüshaus J; Brummer T; Zheng Y; Scilabra SD; Lichtenthaler SF
    Cell Mol Life Sci; 2019 Aug; 76(16):3055-3081. PubMed ID: 31236626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADAM-Integrin Interactions: potential integrin regulated ectodomain shedding activity.
    Bridges LC; Bowditch RD
    Curr Pharm Des; 2005; 11(7):837-47. PubMed ID: 15777238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of ADAM-9 disintegrin-cysteine-rich domains in human keratinocyte migration.
    Zigrino P; Steiger J; Fox JW; Löffek S; Schild A; Nischt R; Mauch C
    J Biol Chem; 2007 Oct; 282(42):30785-93. PubMed ID: 17704059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADAM and ADAMTS disintegrin and metalloproteinases as major factors and molecular targets in vascular malfunction and disease.
    Yang H; Khalil RA
    Adv Pharmacol; 2022; 94():255-363. PubMed ID: 35659374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LGI1 and LGI4 bind to ADAM22, ADAM23 and ADAM11.
    Sagane K; Ishihama Y; Sugimoto H
    Int J Biol Sci; 2008; 4(6):387-96. PubMed ID: 18974846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemorrhagin VaH4, a covalent heterodimeric P-III metalloproteinase from Vipera ammodytes ammodytes with a potential antitumour activity.
    Leonardi A; Sajevic T; Kovačič L; Pungerčar J; Lang Balija M; Halassy B; Trampuš Bakija A; Križaj I
    Toxicon; 2014 Jan; 77():141-55. PubMed ID: 24269369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cysteine-rich domain of snake venom metalloproteinases is a ligand for von Willebrand factor A domains: role in substrate targeting.
    Serrano SM; Kim J; Wang D; Dragulev B; Shannon JD; Mann HH; Veit G; Wagener R; Koch M; Fox JW
    J Biol Chem; 2006 Dec; 281(52):39746-56. PubMed ID: 17040908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-activity relationship studies on ADAM protein-integrin interactions.
    Lu X; Lu D; Scully MF; Kakkar VV
    Cardiovasc Hematol Agents Med Chem; 2007 Jan; 5(1):29-42. PubMed ID: 17266546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional classification of ADAMs based on a conserved motif for binding to integrin alpha 9beta 1: implications for sperm-egg binding and other cell interactions.
    Eto K; Huet C; Tarui T; Kupriyanov S; Liu HZ; Puzon-McLaughlin W; Zhang XP; Sheppard D; Engvall E; Takada Y
    J Biol Chem; 2002 May; 277(20):17804-10. PubMed ID: 11882657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ectodomain shedding and ADAMs in development.
    Weber S; Saftig P
    Development; 2012 Oct; 139(20):3693-709. PubMed ID: 22991436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.