BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 19692514)

  • 1. Neural substrates of practice structure that support future off-line learning.
    Wymbs NF; Grafton ST
    J Neurophysiol; 2009 Oct; 102(4):2462-76. PubMed ID: 19692514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task.
    Gobel EW; Parrish TB; Reber PJ
    Neuroimage; 2011 Oct; 58(4):1150-7. PubMed ID: 21771663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practice structure improves unconscious transitional memories by increasing synchrony in a premotor network.
    Song S; Gotts SJ; Dayan E; Cohen LG
    J Cogn Neurosci; 2015 Aug; 27(8):1503-12. PubMed ID: 25761004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical re-evaluation of fMRI signatures of motor sequence learning.
    Berlot E; Popp NJ; Diedrichsen J
    Elife; 2020 May; 9():. PubMed ID: 32401193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interleaved practice enhances skill learning and the functional connectivity of fronto-parietal networks.
    Lin CH; Chiang MC; Knowlton BJ; Iacoboni M; Udompholkul P; Wu AD
    Hum Brain Mapp; 2013 Jul; 34(7):1542-58. PubMed ID: 22359276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural substrates of contextual interference during motor learning support a model of active preparation.
    Cross ES; Schmitt PJ; Grafton ST
    J Cogn Neurosci; 2007 Nov; 19(11):1854-71. PubMed ID: 17958488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-behavior correlates of optimizing learning through interleaved practice.
    Lin CH; Knowlton BJ; Chiang MC; Iacoboni M; Udompholkul P; Wu AD
    Neuroimage; 2011 Jun; 56(3):1758-72. PubMed ID: 21376126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor sequence learning with the nondominant left hand. A PET functional imaging study.
    Grafton ST; Hazeltine E; Ivry RB
    Exp Brain Res; 2002 Oct; 146(3):369-78. PubMed ID: 12232693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential contribution of the supplementary motor area to stabilization of a procedural motor skill acquired through different practice schedules.
    Tanaka S; Honda M; Hanakawa T; Cohen LG
    Cereb Cortex; 2010 Sep; 20(9):2114-21. PubMed ID: 20038545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenge to Promote Change: The Neural Basis of the Contextual Interference Effect in Young and Older Adults.
    Pauwels L; Chalavi S; Gooijers J; Maes C; Albouy G; Sunaert S; Swinnen SP
    J Neurosci; 2018 Mar; 38(13):3333-3345. PubMed ID: 29483284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific increases within global decreases: a functional magnetic resonance imaging investigation of five days of motor sequence learning.
    Steele CJ; Penhune VB
    J Neurosci; 2010 Jun; 30(24):8332-41. PubMed ID: 20554884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain changes following four weeks of unimanual motor training: Evidence from behavior, neural stimulation, cortical thickness, and functional MRI.
    Sale MV; Reid LB; Cocchi L; Pagnozzi AM; Rose SE; Mattingley JB
    Hum Brain Mapp; 2017 Sep; 38(9):4773-4787. PubMed ID: 28677224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural connectivity prior to whole-body sensorimotor skill learning associates with changes in resting state functional connectivity.
    Mizuguchi N; Maudrich T; Kenville R; Carius D; Maudrich D; Villringer A; Ragert P
    Neuroimage; 2019 Aug; 197():191-199. PubMed ID: 31029869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional bases for individual differences in motor learning.
    Tomassini V; Jbabdi S; Kincses ZT; Bosnell R; Douaud G; Pozzilli C; Matthews PM; Johansen-Berg H
    Hum Brain Mapp; 2011 Mar; 32(3):494-508. PubMed ID: 20533562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similar network activated by young and old adults during the acquisition of a motor sequence.
    Daselaar SM; Rombouts SA; Veltman DJ; Raaijmakers JG; Jonker C
    Neurobiol Aging; 2003 Nov; 24(7):1013-9. PubMed ID: 12928061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased functional connectivity between cortical hand areas and praxis network associated with training-related improvements in non-dominant hand precision drawing.
    Philip BA; Frey SH
    Neuropsychologia; 2016 Jul; 87():157-168. PubMed ID: 27212059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor sequence learning-induced neural efficiency in functional brain connectivity.
    Karim HT; Huppert TJ; Erickson KI; Wollam ME; Sparto PJ; Sejdić E; VanSwearingen JM
    Behav Brain Res; 2017 Feb; 319():87-95. PubMed ID: 27845228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Practice Schedule on Context-Dependent Learning.
    Lee YY; Fisher BE
    J Mot Behav; 2019; 51(2):121-128. PubMed ID: 29498594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Somatosensory changes associated with motor skill learning.
    Mirdamadi JL; Block HJ
    J Neurophysiol; 2020 Mar; 123(3):1052-1062. PubMed ID: 31995429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitatory repetitive transcranial magnetic stimulation to left dorsal premotor cortex enhances motor consolidation of new skills.
    Boyd LA; Linsdell MA
    BMC Neurosci; 2009 Jul; 10():72. PubMed ID: 19583831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.