These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 19692594)

  • 1. Associative conditioning tunes transient dynamics of early olfactory processing.
    Fernandez PC; Locatelli FF; Person-Rennell N; Deleo G; Smith BH
    J Neurosci; 2009 Aug; 29(33):10191-202. PubMed ID: 19692594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential associative training enhances olfactory acuity in Drosophila melanogaster.
    Barth J; Dipt S; Pech U; Hermann M; Riemensperger T; Fiala A
    J Neurosci; 2014 Jan; 34(5):1819-37. PubMed ID: 24478363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early olfactory experience modifies neural activity in the antennal lobe of a social insect at the adult stage.
    Arenas A; Giurfa M; Farina WM; Sandoz JC
    Eur J Neurosci; 2009 Oct; 30(8):1498-508. PubMed ID: 19821839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning modifies odor mixture processing to improve detection of relevant components.
    Chen JY; Marachlian E; Assisi C; Huerta R; Smith BH; Locatelli F; Bazhenov M
    J Neurosci; 2015 Jan; 35(1):179-97. PubMed ID: 25568113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning modulates the ensemble representations for odors in primary olfactory networks.
    Daly KC; Christensen TA; Lei H; Smith BH; Hildebrand JG
    Proc Natl Acad Sci U S A; 2004 Jul; 101(28):10476-81. PubMed ID: 15232007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning about natural variation of odor mixtures enhances categorization in early olfactory processing.
    Locatelli FF; Fernandez PC; Smith BH
    J Exp Biol; 2016 Sep; 219(Pt 17):2752-62. PubMed ID: 27412003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maturation of odor representation in the honeybee antennal lobe.
    Wang S; Zhang S; Sato K; Srinivasan MV
    J Insect Physiol; 2005 Nov; 51(11):1244-54. PubMed ID: 16183074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The olfactory memory of the honeybee Apis mellifera. II. Blocking between odorants in binary mixtures.
    Smith BH; Cobey S
    J Exp Biol; 1994 Oct; 195():91-108. PubMed ID: 7964421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Olfactory trace conditioning in Drosophila.
    Galili DS; Lüdke A; Galizia CG; Szyszka P; Tanimoto H
    J Neurosci; 2011 May; 31(20):7240-8. PubMed ID: 21593308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning-Dependent and -Independent Enhancement of Mitral/Tufted Cell Glomerular Odor Responses Following Olfactory Fear Conditioning in Awake Mice.
    Ross JM; Fletcher ML
    J Neurosci; 2018 May; 38(20):4623-4640. PubMed ID: 29669746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized vs. stimulus-specific learned fear differentially modifies stimulus encoding in primary sensory cortex of awake rats.
    Chen CF; Barnes DC; Wilson DA
    J Neurophysiol; 2011 Dec; 106(6):3136-44. PubMed ID: 21918001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Associative learning modifies neural representations of odors in the insect brain.
    Faber T; Joerges J; Menzel R
    Nat Neurosci; 1999 Jan; 2(1):74-8. PubMed ID: 10195183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Similarity and Strength of Glomerular Odor Representations Define a Neural Metric of Sniff-Invariant Discrimination Time.
    Bhattacharjee AS; Konakamchi S; Turaev D; Vincis R; Nunes D; Dingankar AA; Spors H; Carleton A; Kuner T; Abraham NM
    Cell Rep; 2019 Sep; 28(11):2966-2978.e5. PubMed ID: 31509755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatile exposure within the honeybee hive and its effect on olfactory discrimination.
    Fernández VM; Arenas A; Farina WM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Aug; 195(8):759-68. PubMed ID: 19521702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal Response Latencies Encode First Odor Identity Information across Subjects.
    Paoli M; Albi A; Zanon M; Zanini D; Antolini R; Haase A
    J Neurosci; 2018 Oct; 38(43):9240-9251. PubMed ID: 30201774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel processing via a dual olfactory pathway in the honeybee.
    Brill MF; Rosenbaum T; Reus I; Kleineidam CJ; Nawrot MP; Rössler W
    J Neurosci; 2013 Feb; 33(6):2443-56. PubMed ID: 23392673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Millisecond stimulus onset-asynchrony enhances information about components in an odor mixture.
    Stierle JS; Galizia CG; Szyszka P
    J Neurosci; 2013 Apr; 33(14):6060-9. PubMed ID: 23554487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural representation of olfactory mixtures in the honeybee antennal lobe.
    Deisig N; Giurfa M; Lachnit H; Sandoz JC
    Eur J Neurosci; 2006 Aug; 24(4):1161-74. PubMed ID: 16930442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antennal lobe processing increases separability of odor mixture representations in the honeybee.
    Deisig N; Giurfa M; Sandoz JC
    J Neurophysiol; 2010 Apr; 103(4):2185-94. PubMed ID: 20181736
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.