BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

801 related articles for article (PubMed ID: 19693013)

  • 1. Coordination of Rho GTPase activities during cell protrusion.
    Machacek M; Hodgson L; Welch C; Elliott H; Pertz O; Nalbant P; Abell A; Johnson GL; Hahn KM; Danuser G
    Nature; 2009 Sep; 461(7260):99-103. PubMed ID: 19693013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RhoA/ROCK-mediated switching between Cdc42- and Rac1-dependent protrusion in MTLn3 carcinoma cells.
    El-Sibai M; Pertz O; Pang H; Yip SC; Lorenz M; Symons M; Condeelis JS; Hahn KM; Backer JM
    Exp Cell Res; 2008 Apr; 314(7):1540-52. PubMed ID: 18316075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient Activations of Rac1 at the Lamellipodium Tip Trigger Membrane Protrusion.
    Mehidi A; Rossier O; Schaks M; Chazeau A; Binamé F; Remorino A; Coppey M; Karatas Z; Sibarita JB; Rottner K; Moreau V; Giannone G
    Curr Biol; 2019 Sep; 29(17):2852-2866.e5. PubMed ID: 31422887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatio-temporal co-ordination of RhoA, Rac1 and Cdc42 activation during prototypical edge protrusion and retraction dynamics.
    Martin K; Reimann A; Fritz RD; Ryu H; Jeon NL; Pertz O
    Sci Rep; 2016 Feb; 6():21901. PubMed ID: 26912264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation by afadin of cyclical activation and inactivation of Rap1, Rac1, and RhoA small G proteins at leading edges of moving NIH3T3 cells.
    Miyata M; Rikitake Y; Takahashi M; Nagamatsu Y; Yamauchi Y; Ogita H; Hirata K; Takai Y
    J Biol Chem; 2009 Sep; 284(36):24595-609. PubMed ID: 19589776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genetically encoded photoactivatable Rac controls the motility of living cells.
    Wu YI; Frey D; Lungu OI; Jaehrig A; Schlichting I; Kuhlman B; Hahn KM
    Nature; 2009 Sep; 461(7260):104-8. PubMed ID: 19693014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cdc42 and Rac family GTPases regulate mode and speed but not direction of primary fibroblast migration during platelet-derived growth factor-dependent chemotaxis.
    Monypenny J; Zicha D; Higashida C; Oceguera-Yanez F; Narumiya S; Watanabe N
    Mol Cell Biol; 2009 May; 29(10):2730-47. PubMed ID: 19273601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rho MultiBinder, a fluorescent biosensor that reports the activity of multiple GTPases.
    Pimenta FM; Huh J; Guzman B; Amanah D; Marston DJ; Pinkin NK; Danuser G; Hahn KM
    Biophys J; 2023 Sep; 122(18):3646-3655. PubMed ID: 37085995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells.
    Ge J; Burnier L; Adamopoulou M; Kwa MQ; Schaks M; Rottner K; Brakebusch C
    J Biol Chem; 2018 Jun; 293(24):9358-9369. PubMed ID: 29700112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterotrimeric G protein betagamma subunits stimulate FLJ00018, a guanine nucleotide exchange factor for Rac1 and Cdc42.
    Ueda H; Nagae R; Kozawa M; Morishita R; Kimura S; Nagase T; Ohara O; Yoshida S; Asano T
    J Biol Chem; 2008 Jan; 283(4):1946-53. PubMed ID: 18045877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CCK activates RhoA and Rac1 differentially through Galpha13 and Galphaq in mouse pancreatic acini.
    Sabbatini ME; Bi Y; Ji B; Ernst SA; Williams JA
    Am J Physiol Cell Physiol; 2010 Mar; 298(3):C592-601. PubMed ID: 19940064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of type I phosphatidylinositol 4-phosphate 5-kinase isoforms by the Rho GTPases, RhoA, Rac1, and Cdc42.
    Weernink PA; Meletiadis K; Hommeltenberg S; Hinz M; Ishihara H; Schmidt M; Jakobs KH
    J Biol Chem; 2004 Feb; 279(9):7840-9. PubMed ID: 14681219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role of STAT3 in Rho GTPase-regulated cell migration and proliferation.
    Debidda M; Wang L; Zang H; Poli V; Zheng Y
    J Biol Chem; 2005 Apr; 280(17):17275-85. PubMed ID: 15705584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental expression of three small GTPases in the mouse eye.
    Mitchell DC; Bryan BA; Liu JP; Liu WB; Zhang L; Qu J; Zhou X; Liu M; Li DW
    Mol Vis; 2007 Jul; 13():1144-53. PubMed ID: 17653061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live show of Rho GTPases in cell migration.
    Yan X; Shen Y; Zhu X
    J Mol Cell Biol; 2010 Apr; 2(2):68-9. PubMed ID: 20008333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts.
    Wan Q; Cho E; Yokota H; Na S
    Biochem Biophys Res Commun; 2013 Apr; 433(4):502-7. PubMed ID: 23524265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Tools To Study the Isoform-Specific Roles of Small GTPases in Immune Cells.
    Miskolci V; Wu B; Moshfegh Y; Cox D; Hodgson L
    J Immunol; 2016 Apr; 196(8):3479-93. PubMed ID: 26951800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism and role of localized activation of Rho-family GTPases in growth factor-stimulated fibroblasts and neuronal cells.
    Kurokawa K; Nakamura T; Aoki K; Matsuda M
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):631-4. PubMed ID: 16042560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential role of Rho GTPases in intestinal epithelial barrier regulation in vitro.
    Schlegel N; Meir M; Spindler V; Germer CT; Waschke J
    J Cell Physiol; 2011 May; 226(5):1196-203. PubMed ID: 20945370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cdc42 activity in the trailing edge is required for persistent directional migration of keratinocytes.
    Patwardhan R; Nanda S; Wagner J; Stockter T; Dehmelt L; Nalbant P
    Mol Biol Cell; 2024 Jan; 35(1):br1. PubMed ID: 37910204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.