These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19693340)

  • 1. Experimental verification of Faradaic charging in ac electrokinetics.
    Ng WY; Lam YC; Rodríguez I
    Biomicrofluidics; 2009 Apr; 3(2):22405. PubMed ID: 19693340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DC-biased AC-electrokinetics: a conductivity gradient driven fluid flow.
    Ng WY; Ramos A; Lam YC; Wijaya IP; Rodriguez I
    Lab Chip; 2011 Dec; 11(24):4241-7. PubMed ID: 22052533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution pH change in non-uniform alternating current electric fields at frequencies above the electrode charging frequency.
    An R; Massa K; Wipf DO; Minerick AR
    Biomicrofluidics; 2014 Nov; 8(6):064126. PubMed ID: 25553200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study of dc-biased ac-electrokinetic flow over symmetrical electrodes.
    Yang Ng W; Ramos A; Cheong Lam Y; Rodriguez I
    Biomicrofluidics; 2012 Mar; 6(1):12817-1281710. PubMed ID: 22662084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of microflow reversal by ac electrokinetics in orthogonal electrodes for micropump design.
    Yang K; Wu J
    Biomicrofluidics; 2008 Apr; 2(2):24101. PubMed ID: 19693404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow reversal in traveling-wave electrokinetics: an analysis of forces due to ionic concentration gradients.
    García-Sánchez P; Ramos A; González A; Green NG; Morgan H
    Langmuir; 2009 May; 25(9):4988-97. PubMed ID: 19320476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of pumping mechanism for non-Newtonian blood flow with AC electrothermal forces in a microchannel by hybrid boundary element method and immersed boundary-lattice Boltzmann method.
    Ren Q
    Electrophoresis; 2018 Jun; 39(11):1329-1338. PubMed ID: 29427440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroneutral Layer Dynamics Drive Ion Migration in Low Frequency AC Electrophoresis Below the Water Electrolysis Threshold.
    Choi MH; Booth W; Edwards B; Timperman AT
    Anal Chem; 2024 Jul; ():. PubMed ID: 39010789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.
    Islam N; Reyna J
    Electrophoresis; 2012 Apr; 33(7):1191-7. PubMed ID: 22539322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices.
    Sasaki N
    Anal Sci; 2012; 28(1):3-8. PubMed ID: 22232216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH Gradients in Spatially Non-Uniform AC Electric Fields around the Charging Frequency; A Study of Two Different Geometries and Electrode Passivation.
    Tahmasebi A; Habibi S; Collins JL; An R; Dehdashti E; Minerick AR
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ac electrokinetic micropumps: the effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance.
    Olesen LH; Bruus H; Ajdari A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056313. PubMed ID: 16803043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous-Flow Nanoparticle Trapping Driven by Hybrid Electrokinetics in Microfluidics.
    Liu W; Tao Y; Xue R; Song C; Wu Q; Ren Y
    Electrophoresis; 2021 Apr; 42(7-8):939-949. PubMed ID: 32705697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AC Electrokinetics of Physiological Fluids for Biomedical Applications.
    Lu Y; Liu T; Lamanda AC; Sin ML; Gau V; Liao JC; Wong PK
    J Lab Autom; 2015 Dec; 20(6):611-20. PubMed ID: 25487557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-range transport and directed assembly of charged colloids under aperiodic electrodiffusiophoresis.
    Wang K; Leville S; Behdani B; Silvera Batista CA
    Soft Matter; 2022 Aug; 18(32):5949-5959. PubMed ID: 35920440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of three AC electroosmotic flow protocols for mixing in microfluidic channel.
    Chen JK; Weng CN; Yang RJ
    Lab Chip; 2009 May; 9(9):1267-73. PubMed ID: 19370247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining DC and AC electric fields with deterministic lateral displacement for micro- and nano-particle separation.
    Calero V; Garcia-Sanchez P; Ramos A; Morgan H
    Biomicrofluidics; 2019 Sep; 13(5):054110. PubMed ID: 31673301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency tuning allows flow direction control in microfluidic networks with passive features.
    Jain R; Lutz B
    Lab Chip; 2017 May; 17(9):1552-1558. PubMed ID: 28350018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-Tunable Assembly of Gold Nanoparticles Using Competitive AC Electrokinetics.
    Goel M; Singh A; Bhola A; Gupta S
    Langmuir; 2019 Jun; 35(24):8015-8024. PubMed ID: 30879298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigation of field-effect control on hybrid electrokinetics for continuous and position-tunable nanoparticle concentration in microfluidics.
    Tao Y; Liu W; Song C; Ge Z; Li Z; Li Y; Ren Y
    Electrophoresis; 2022 Nov; 43(21-22):2074-2092. PubMed ID: 36030405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.