These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 19693347)
1. Modeling the coalescence of sessile droplets. Sellier M; Trelluyer E Biomicrofluidics; 2009 Jun; 3(2):22412. PubMed ID: 19693347 [TBL] [Abstract][Full Text] [Related]
2. Electrowetting-Induced Coalescence of Sessile Droplets in Viscous Medium. Quintero JSM; Majhy B; Caesar M; Waghmare PR Langmuir; 2023 Apr; 39(14):4917-4923. PubMed ID: 36996262 [TBL] [Abstract][Full Text] [Related]
3. Coalescence of sessile microdroplets subject to a wettability gradient on a solid surface. Ahmadlouydarab M; Lan C; Das AK; Ma Y Phys Rev E; 2016 Sep; 94(3-1):033112. PubMed ID: 27739804 [TBL] [Abstract][Full Text] [Related]
4. Coalescence Dynamics of PEDOT:PSS Droplets Impacting at Offset on Substrates for Inkjet Printing. Sarojini Kg K; Dhar P; Varughese S; Das SK Langmuir; 2016 Jun; 32(23):5838-51. PubMed ID: 27212397 [TBL] [Abstract][Full Text] [Related]
5. Mixing and internal dynamics of droplets impacting and coalescing on a solid surface. Castrejón-Pita JR; Kubiak KJ; Castrejón-Pita AA; Wilson MC; Hutchings IM Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023023. PubMed ID: 24032939 [TBL] [Abstract][Full Text] [Related]
7. Coalescence of immiscible droplets in liquid environments. Xu H; Wang T; Che Z J Colloid Interface Sci; 2024 Apr; 659():60-70. PubMed ID: 38157727 [TBL] [Abstract][Full Text] [Related]
8. Coalescence of spreading droplets on a wettable substrate. Ristenpart WD; McCalla PM; Roy RV; Stone HA Phys Rev Lett; 2006 Aug; 97(6):064501. PubMed ID: 17026171 [TBL] [Abstract][Full Text] [Related]
9. Universal scaling law for electrified sessile droplets on a lyophilic surface. Pillai DS; Sahu KC Phys Rev E; 2024 Jan; 109(1):L013101. PubMed ID: 38366450 [TBL] [Abstract][Full Text] [Related]
16. Coalescence, Spreading, and Rebound of Two Water Droplets with Different Temperatures on a Superhydrophobic Surface. Xu H; Chang C; Yi N; Tao P; Song C; Wu J; Deng T; Shang W ACS Omega; 2019 Oct; 4(18):17615-17622. PubMed ID: 31681868 [TBL] [Abstract][Full Text] [Related]
17. Induced detachment of coalescing droplets on superhydrophobic surfaces. Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956 [TBL] [Abstract][Full Text] [Related]
18. Digital Microfluidics: Magnetic Transportation and Coalescence of Sessile Droplets on Hydrophobic Surfaces. Hassan MR; Zhang J; Wang C Langmuir; 2021 May; 37(19):5823-5837. PubMed ID: 33961445 [TBL] [Abstract][Full Text] [Related]
19. Dynamic wetting and spreading and the role of topography. McHale G; Newton MI; Shirtcliffe NJ J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886 [TBL] [Abstract][Full Text] [Related]
20. Numerical study on electrohydrodynamic multiple droplet interactions. Casas PS; Garzon M; Gray LJ; Sethian JA Phys Rev E; 2019 Dec; 100(6-1):063111. PubMed ID: 31962531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]