These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 19693350)
1. Thin film electro-osmotic pumps for biomicrofluidic applications. Edwards JM; Hamblin MN; Fuentes HV; Peeni BA; Lee ML; Woolley AT; Hawkins AR Biomicrofluidics; 2007 Jan; 1(1):14101. PubMed ID: 19693350 [TBL] [Abstract][Full Text] [Related]
2. A handy liquid metal based electroosmotic flow pump. Gao M; Gui L Lab Chip; 2014 Jun; 14(11):1866-72. PubMed ID: 24706096 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic pumping, routing and metering by contactless metal-based electro-osmosis. Fu X; Mavrogiannis N; Doria S; Gagnon Z Lab Chip; 2015 Sep; 15(17):3600-8. PubMed ID: 26053965 [TBL] [Abstract][Full Text] [Related]
4. The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps. Urbanski JP; Levitan JA; Burch DN; Thorsen T; Bazant MZ J Colloid Interface Sci; 2007 May; 309(2):332-41. PubMed ID: 17346735 [TBL] [Abstract][Full Text] [Related]
6. Electroosmotic flow in vapor deposited silicon dioxide and nitride microchannels. Hamblin MN; Edwards JM; Lee ML; Woolley AT; Hawkins AR Biomicrofluidics; 2007 Jul; 1(3):34101. PubMed ID: 19693357 [TBL] [Abstract][Full Text] [Related]
7. Field-effect flow control in a polydimethylsiloxane-based microfluidic system. Buch JS; Wang PC; DeVoe DL; Lee CS Electrophoresis; 2001 Oct; 22(18):3902-7. PubMed ID: 11700719 [TBL] [Abstract][Full Text] [Related]
8. Effect of nanostructures orientation on electroosmotic flow in a microfluidic channel. Lim AE; Lim CY; Lam YC; Taboryski R; Wang SR Nanotechnology; 2017 Jun; 28(25):255303. PubMed ID: 28510536 [TBL] [Abstract][Full Text] [Related]
9. Contactless microfluidic pumping using microchannel-integrated carbon black composite membranes. Fu X; Gagnon Z Biomicrofluidics; 2015 Sep; 9(5):054122. PubMed ID: 26543514 [TBL] [Abstract][Full Text] [Related]
10. Effect of interfacial Maxwell stress on time periodic electro-osmotic flow in a thin liquid film with a flat interface. Mayur M; Amiroudine S; Lasseux D; Chakraborty S Electrophoresis; 2014 Mar; 35(5):670-80. PubMed ID: 24123086 [TBL] [Abstract][Full Text] [Related]
11. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip. Bonk SM; Stubbe M; Buehler SM; Tautorat C; Baumann W; Klinkenberg ED; Gimsa J Biosensors (Basel); 2015 Jul; 5(3):513-36. PubMed ID: 26263849 [TBL] [Abstract][Full Text] [Related]
12. Development of a Multi-Stage Electroosmotic Flow Pump Using Liquid Metal Electrodes. Gao M; Gui L Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404339 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and characterization of a fritless microfabricated electroosmotic pump with reduced pH dependence. Razunguzwa TT; Timperman AT Anal Chem; 2004 Mar; 76(5):1336-41. PubMed ID: 14987090 [TBL] [Abstract][Full Text] [Related]
14. Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics. Huang CC; Bazant MZ; Thorsen T Lab Chip; 2010 Jan; 10(1):80-5. PubMed ID: 20024054 [TBL] [Abstract][Full Text] [Related]
15. A theoretical analysis of Biorheological fluid flowing through a complex wavy convergent channel under porosity and electro-magneto-hydrodynamics Effects. Javid K; Waqas M; Asghar Z; Ghaffari A Comput Methods Programs Biomed; 2020 Jul; 191():105413. PubMed ID: 32169776 [TBL] [Abstract][Full Text] [Related]