BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 19693372)

  • 1. Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks.
    Lewpiriyawong N; Yang C; Lam YC
    Biomicrofluidics; 2008 Aug; 2(3):34105. PubMed ID: 19693372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous separation of multiple particles by negative and positive dielectrophoresis in a modified H-filter.
    Lewpiriyawong N; Yang C
    Electrophoresis; 2014 Mar; 35(5):714-20. PubMed ID: 24338796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results.
    Cummings EB; Singh AK
    Anal Chem; 2003 Sep; 75(18):4724-31. PubMed ID: 14674447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations.
    Calero V; García-Sánchez P; Ramos A; Morgan H
    J Chromatogr A; 2020 Jul; 1623():461151. PubMed ID: 32505271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous separation of microparticles by size with direct current-dielectrophoresis.
    Kang KH; Kang Y; Xuan X; Li D
    Electrophoresis; 2006 Feb; 27(3):694-702. PubMed ID: 16385598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A continuous DC-insulator dielectrophoretic sorter of microparticles.
    Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR
    J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous manipulation and separation of particles using combined obstacle- and curvature-induced direct current dielectrophoresis.
    Li M; Li S; Li W; Wen W; Alici G
    Electrophoresis; 2013 Apr; 34(7):952-60. PubMed ID: 23436345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectrophoretic separation of bioparticles in microdevices: a review.
    Jubery TZ; Srivastava SK; Dutta P
    Electrophoresis; 2014 Mar; 35(5):691-713. PubMed ID: 24338825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct numerical simulation of AC dielectrophoretic particle-particle interactive motions.
    Ai Y; Zeng Z; Qian S
    J Colloid Interface Sci; 2014 Mar; 417():72-9. PubMed ID: 24407661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.
    Das D; Biswas K; Das S
    Med Eng Phys; 2014 Jun; 36(6):726-31. PubMed ID: 24388100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DC-dielectrophoretic separation of microparticles using an oil droplet obstacle.
    Barbulovic-Nad I; Xuan X; Lee JS; Li D
    Lab Chip; 2006 Feb; 6(2):274-9. PubMed ID: 16450038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications.
    Xuan X
    Electrophoresis; 2019 Sep; 40(18-19):2484-2513. PubMed ID: 30816561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration.
    Martínez-López JI; Moncada-Hernández H; Baylon-Cardiel JL; Martínez-Chapa SO; Rito-Palomares M; Lapizco-Encinas BH
    Anal Bioanal Chem; 2009 May; 394(1):293-302. PubMed ID: 19190896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting Particle Mutual Interactions To Enable Challenging Dielectrophoretic Processes.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Anal Chem; 2017 Aug; 89(16):8459-8467. PubMed ID: 28683553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles.
    Jia Y; Ren Y; Jiang H
    Electrophoresis; 2015 Aug; 36(15):1744-53. PubMed ID: 25962351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Droplet Manipulation and Characterization by ac-DEP.
    Zhao K; Li D
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36572-36581. PubMed ID: 30264985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels.
    Barrett LM; Skulan AJ; Singh AK; Cummings EB; Fiechtner GJ
    Anal Chem; 2005 Nov; 77(21):6798-804. PubMed ID: 16255576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip.
    Li S; Li M; Bougot-Robin K; Cao W; Yeung Yeung Chau I; Li W; Wen W
    Biomicrofluidics; 2013; 7(2):24106. PubMed ID: 24404011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic characterization and continuous separation of cells and particles using conducting poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis.
    Lewpiriyawong N; Kandaswamy K; Yang C; Ivanov V; Stocker R
    Anal Chem; 2011 Dec; 83(24):9579-85. PubMed ID: 22035423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.