These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. High throughput single-cell and multiple-cell micro-encapsulation. Lagus TP; Edd JF J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254 [TBL] [Abstract][Full Text] [Related]
3. The complexity of surface acoustic wave fields used for microfluidic applications. Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142 [TBL] [Abstract][Full Text] [Related]
4. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Destgeer G; Sung HJ Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538 [TBL] [Abstract][Full Text] [Related]
5. SAW Synthesis With IDTs Array and the Inverse Filter: Toward a Versatile SAW Toolbox for Microfluidics and Biological Applications. Riaud A; Baudoin M; Thomas JL; Bou Matar O IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1601-1607. PubMed ID: 28873055 [TBL] [Abstract][Full Text] [Related]
6. Lamb to Rayleigh Wave Conversion on Superstrates as a Means to Facilitate Disposable Acoustomicrofluidic Applications. Wong KS; Lee L; Hung YM; Yeo LY; Tan MK Anal Chem; 2019 Oct; 91(19):12358-12368. PubMed ID: 31500406 [TBL] [Abstract][Full Text] [Related]
7. Atomization off thin water films generated by high-frequency substrate wave vibrations. Collins DJ; Manor O; Winkler A; Schmidt H; Friend JR; Yeo LY Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056312. PubMed ID: 23214881 [TBL] [Abstract][Full Text] [Related]
8. Experimental research on surface acoustic wave microfluidic atomization for drug delivery. Huang QY; Le Y; Hu H; Wan ZJ; Ning J; Han JL Sci Rep; 2022 May; 12(1):7930. PubMed ID: 35562384 [TBL] [Abstract][Full Text] [Related]
9. Controllable Acoustic Mixing of Fluids in Microchannels for the Fabrication of Therapeutic Nanoparticles. Westerhausen C; Schnitzler LG; Wendel D; Krzysztoń R; Lächelt U; Wagner E; Rädler JO; Wixforth A Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404328 [TBL] [Abstract][Full Text] [Related]
10. Frequency dependence of surface acoustic wave swimming. Pouya C; Hoggard K; Gossage SH; Peter HR; Poole T; Nash GR J R Soc Interface; 2019 Jun; 16(155):20190113. PubMed ID: 31213171 [TBL] [Abstract][Full Text] [Related]
11. Surface acoustic wave microfluidics. Ding X; Li P; Lin SC; Stratton ZS; Nama N; Guo F; Slotcavage D; Mao X; Shi J; Costanzo F; Huang TJ Lab Chip; 2013 Sep; 13(18):3626-49. PubMed ID: 23900527 [TBL] [Abstract][Full Text] [Related]
12. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner. Khan MS; Sahin MA; Destgeer G; Park J Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893 [TBL] [Abstract][Full Text] [Related]
13. Graphene-mediated microfluidic transport and nebulization via high frequency Rayleigh wave substrate excitation. Ang KM; Yeo LY; Hung YM; Tan MK Lab Chip; 2016 Sep; 16(18):3503-14. PubMed ID: 27502324 [TBL] [Abstract][Full Text] [Related]
14. Surface vibration induced spatial ordering of periodic polymer patterns on a substrate. Alvarez M; Friend JR; Yeo LY Langmuir; 2008 Oct; 24(19):10629-32. PubMed ID: 18795809 [TBL] [Abstract][Full Text] [Related]
15. SAW-driven droplet jetting technology in microfluidic: A review. Lei Y; Hu H Biomicrofluidics; 2020 Nov; 14(6):061505. PubMed ID: 33343781 [TBL] [Abstract][Full Text] [Related]
16. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I. Sachs S; Baloochi M; Cierpka C; König J Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303 [TBL] [Abstract][Full Text] [Related]
17. Surface Acoustic Wave-Based Microfluidic Device for Microparticles Manipulation: Effects of Microchannel Elasticity on the Device Performance. Mezzanzanica G; Français O; Mariani S Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763962 [TBL] [Abstract][Full Text] [Related]
18. Aerosol jet printing of surface acoustic wave microfluidic devices. Rich J; Cole B; Li T; Lu B; Fu H; Smith BN; Xia J; Yang S; Zhong R; Doherty JL; Kaneko K; Suzuki H; Tian Z; Franklin AD; Huang TJ Microsyst Nanoeng; 2024; 10():2. PubMed ID: 38169478 [TBL] [Abstract][Full Text] [Related]
19. Surface acoustic wave concentration of particle and bioparticle suspensions. Li H; Friend JR; Yeo LY Biomed Microdevices; 2007 Oct; 9(5):647-56. PubMed ID: 17530412 [TBL] [Abstract][Full Text] [Related]
20. Planar microfluidic drop splitting and merging. Collignon S; Friend J; Yeo L Lab Chip; 2015 Apr; 15(8):1942-51. PubMed ID: 25738425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]