These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 19693398)
1. Three-dimensional two-component velocity measurement of the flow field induced by the Vorticella picta microorganism using a confocal microparticle image velocimetry technique. Nagai M; Oishi M; Oshima M; Asai H; Fujita H Biomicrofluidics; 2009 Mar; 3(1):14105. PubMed ID: 19693398 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Kinoshita H; Kaneda S; Fujii T; Oshima M Lab Chip; 2007 Mar; 7(3):338-46. PubMed ID: 17330165 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous measurement of concentrations and velocities of submicron species using multicolor imaging and microparticle image velocimetry. Yang JT; Lai YH; Fang WF; Hsu MH Biomicrofluidics; 2010 Mar; 4(1):14109. PubMed ID: 20644678 [TBL] [Abstract][Full Text] [Related]
4. Spatial and temporal patterns of water flow generated by suction-feeding bluegill sunfish Lepomis macrochirus resolved by Particle Image Velocimetry. Day SW; Higham TE; Cheer AY; Wainwright PC J Exp Biol; 2005 Jul; 208(Pt 14):2661-71. PubMed ID: 16000536 [TBL] [Abstract][Full Text] [Related]
5. Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry. Westerdale J; Belohlavek M; McMahon EM; Jiamsripong P; Heys JJ; Milano M J Ultrasound Med; 2011 Feb; 30(2):187-95. PubMed ID: 21266556 [TBL] [Abstract][Full Text] [Related]
6. Contrast Gradient-Based Blood Velocimetry With Computed Tomography: Theory, Simulations, and Proof of Principle in a Dynamic Flow Phantom. Korporaal JG; Benz MR; Schindera ST; Flohr TG; Schmidt B Invest Radiol; 2016 Jan; 51(1):41-9. PubMed ID: 26309186 [TBL] [Abstract][Full Text] [Related]
7. Three dimensional analysis of the exhalation flow in the proximity of the mouth. Berlanga FA; Gomez P; Esteban A; Liu L; Nielsen PV Heliyon; 2024 Feb; 10(4):e26283. PubMed ID: 38434078 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional, three-vector-component velocimetry of cilia-driven fluid flow using correlation-based approaches in optical coherence tomography. Huang BK; Gamm UA; Bhandari V; Khokha MK; Choma MA Biomed Opt Express; 2015 Sep; 6(9):3515-38. PubMed ID: 26417520 [TBL] [Abstract][Full Text] [Related]
9. Velocimetry based on dye visualization for a pulsatile tubing flow measurement. Yang Z; Johnson M Appl Opt; 2019 Apr; 58(10):C7-C13. PubMed ID: 31045025 [TBL] [Abstract][Full Text] [Related]
10. Integrating particle image velocimetry and laser Doppler velocimetry measurements of the regurgitant flow field past mechanical heart valves. Kini V; Bachmann C; Fontaine A; Deutsch S; Tarbell JM Artif Organs; 2001 Feb; 25(2):136-45. PubMed ID: 11251479 [TBL] [Abstract][Full Text] [Related]
11. Experimental investigation of the steady flow downstream of the St. Jude bileaflet heart valve: a comparison between laser Doppler velocimetry and particle image velocimetry techniques. Browne P; Ramuzat A; Saxena R; Yoganathan AP Ann Biomed Eng; 2000 Jan; 28(1):39-47. PubMed ID: 10645786 [TBL] [Abstract][Full Text] [Related]
12. Digital particle image velocimetry (DPIV) measurements of the velocity profiles through bileaflet mechanical valves: in vitro steady. Shandas R; Kwon J Biomed Sci Instrum; 1996; 32():161-7. PubMed ID: 8672664 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of measurement accuracy of X-ray PIV in comparison with the micro-PIV technique. Park H; Jung SY; Park JH; Kim JH; Lee SJ J Synchrotron Radiat; 2018 Mar; 25(Pt 2):552-559. PubMed ID: 29488936 [TBL] [Abstract][Full Text] [Related]
15. Mapping mean and fluctuating velocities by Bayesian multipoint MR velocity encoding-validation against 3D particle tracking velocimetry. Knobloch V; Binter C; Gülan U; Sigfridsson A; Holzner M; Lüthi B; Kozerke S Magn Reson Med; 2014 Apr; 71(4):1405-15. PubMed ID: 23670993 [TBL] [Abstract][Full Text] [Related]
16. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies. Liu CL; Sun Z; Lu GM; Yu JG R Soc Open Sci; 2018 May; 5(5):171255. PubMed ID: 29892347 [TBL] [Abstract][Full Text] [Related]
17. Note: development of a compact x-ray particle image velocimetry for measuring opaque flows. II. Three-dimensional velocity field reconstruction. Jung SY; Lee SJ Rev Sci Instrum; 2012 Apr; 83(4):046102. PubMed ID: 22559588 [TBL] [Abstract][Full Text] [Related]
18. Blood velocity distributions within intact canine arterial bifurcations. Jones CJ; Lever MJ; Ogasawara Y; Parker KH; Tsujioka K; Hiramatsu O; Mito K; Caro CG; Kajiya F Am J Physiol; 1992 May; 262(5 Pt 2):H1592-9. PubMed ID: 1590464 [TBL] [Abstract][Full Text] [Related]
19. An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements. Dabiri JO; Bose S; Gemmell BJ; Colin SP; Costello JH J Exp Biol; 2014 Feb; 217(Pt 3):331-6. PubMed ID: 24115059 [TBL] [Abstract][Full Text] [Related]
20. A T-junction device allowing for two simultaneous orthogonal views: application to bubble formation and break-up. Caprini D; Sinibaldi G; Marino L; Casciola CM Microfluid Nanofluidics; 2018; 22(8):85. PubMed ID: 30881267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]