BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 19693982)

  • 1. [Transforming growth factor-beta and its receptors in scleroderma].
    QIAN H; ZHENG M
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2009 Jul; 38(4):415-21. PubMed ID: 19693982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connective tissue growth factor causes persistent proalpha2(I) collagen gene expression induced by transforming growth factor-beta in a mouse fibrosis model.
    Chujo S; Shirasaki F; Kawara S; Inagaki Y; Kinbara T; Inaoki M; Takigawa M; Takehara K
    J Cell Physiol; 2005 May; 203(2):447-56. PubMed ID: 15605379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of PDGF in fibrotic diseases and systemic sclerosis.
    Trojanowska M
    Rheumatology (Oxford); 2008 Oct; 47 Suppl 5():v2-4. PubMed ID: 18784131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiotensin II in the lesional skin of systemic sclerosis patients contributes to tissue fibrosis via angiotensin II type 1 receptors.
    Kawaguchi Y; Takagi K; Hara M; Fukasawa C; Sugiura T; Nishimagi E; Harigai M; Kamatani N
    Arthritis Rheum; 2004 Jan; 50(1):216-26. PubMed ID: 14730619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming growth factor-beta signaling through the Smad proteins: role in systemic sclerosis.
    Verrecchia F; Mauviel A; Farge D
    Autoimmun Rev; 2006 Oct; 5(8):563-9. PubMed ID: 17027893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of osteonectin, decorin, and transforming growth factor-beta 1 genes in fibroblasts cultured from patients with systemic sclerosis and morphea.
    Vuorio T; Kähäri VM; Black C; Vuorio E
    J Rheumatol; 1991 Feb; 18(2):247-51. PubMed ID: 2023219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of transforming growth factor beta signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator-activated receptor gamma.
    Ghosh AK; Bhattacharyya S; Lakos G; Chen SJ; Mori Y; Varga J
    Arthritis Rheum; 2004 Apr; 50(4):1305-18. PubMed ID: 15077315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of skin fibrosis in systemic sclerosis.
    Jinnin M
    J Dermatol; 2010 Jan; 37(1):11-25. PubMed ID: 20175837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis.
    Distler JH; Jüngel A; Huber LC; Schulze-Horsel U; Zwerina J; Gay RE; Michel BA; Hauser T; Schett G; Gay S; Distler O
    Arthritis Rheum; 2007 Jan; 56(1):311-22. PubMed ID: 17195235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia-induced increase in the production of extracellular matrix proteins in systemic sclerosis.
    Distler JH; Jüngel A; Pileckyte M; Zwerina J; Michel BA; Gay RE; Kowal-Bielecka O; Matucci-Cerinic M; Schett G; Marti HH; Gay S; Distler O
    Arthritis Rheum; 2007 Dec; 56(12):4203-15. PubMed ID: 18050252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upregulated expression of transforming growth factor-beta receptors in dermal fibroblasts of skin sections from patients with systemic sclerosis.
    Kubo M; Ihn H; Yamane K; Tamaki K
    J Rheumatol; 2002 Dec; 29(12):2558-64. PubMed ID: 12465152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular proteoglycans modify TGF-beta bio-availability attenuating its signaling during skeletal muscle differentiation.
    Droguett R; Cabello-Verrugio C; Riquelme C; Brandan E
    Matrix Biol; 2006 Aug; 25(6):332-41. PubMed ID: 16766169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of interleukin-10 on the gene expression of type I collagen, fibronectin, and decorin in human skin fibroblasts: differential regulation by transforming growth factor-beta and monocyte chemoattractant protein-1.
    Yamamoto T; Eckes B; Krieg T
    Biochem Biophys Res Commun; 2001 Feb; 281(1):200-5. PubMed ID: 11178980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TGF beta--a role in systemic sclerosis?
    Cotton SA; Herrick AL; Jayson MI; Freemont AJ
    J Pathol; 1998 Jan; 184(1):4-6. PubMed ID: 9582519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered dynamics of transforming growth factor β(TGF-β) receptors in scleroderma fibroblasts.
    Asano Y; Ihn H; Jinnin M; Tamaki K; Sato S
    Ann Rheum Dis; 2011 Feb; 70(2):384-7. PubMed ID: 21081531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transforming growth factor-beta 1 and collagen gene expression during postnatal skin development and fibrosis in the tight-skin mouse.
    Pablos JL; Everett ET; Harley R; LeRoy EC; Norris JS
    Lab Invest; 1995 Jun; 72(6):670-8. PubMed ID: 7783425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scleroderma, fibroblasts, signaling, and excessive extracellular matrix.
    Ihn H
    Curr Rheumatol Rep; 2005 Apr; 7(2):156-62. PubMed ID: 15760596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connective tissue growth factor: growth factor, matricellular organizer, fibrotic biomarker or molecular target for anti-fibrotic therapy in SSc?
    Abraham D
    Rheumatology (Oxford); 2008 Oct; 47 Suppl 5():v8-9. PubMed ID: 18784153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of cardiac fibrosis by transforming growth factor-beta(1).
    Lijnen PJ; Petrov VV; Fagard RH
    Mol Genet Metab; 2000; 71(1-2):418-35. PubMed ID: 11001836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming growth factor-beta: a key mediator of fibrosis.
    Mauviel A
    Methods Mol Med; 2005; 117():69-80. PubMed ID: 16118446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.