These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 19694121)
1. Host resistance reverses the outcome of competition between microparasites. Gruner DS; Kolekar A; McLaughlin JP; Strong DR Ecology; 2009 Jul; 90(7):1721-8. PubMed ID: 19694121 [TBL] [Abstract][Full Text] [Related]
2. Entomopathogenic nematodes: natural enemies of root-feeding caterpillars on bush lupine. Strong DR; Kaya HK; Whipple AV; Child AL; Kraig S; Bondonno M; Dyer K; Maron JL Oecologia; 1996 Oct; 108(1):167-173. PubMed ID: 28307747 [TBL] [Abstract][Full Text] [Related]
3. Soil mediates the interaction of coexisting entomopathogenic nematodes with an insect host. Gruner DS; Ram K; Strong DR J Invertebr Pathol; 2007 Jan; 94(1):12-9. PubMed ID: 17005194 [TBL] [Abstract][Full Text] [Related]
4. Plant facilitation of a belowground predator. Preisser EL; Dugaw CJ; Dennis B; Strong DR Ecology; 2006 May; 87(5):1116-23. PubMed ID: 16761589 [TBL] [Abstract][Full Text] [Related]
5. Phoresy of the entomopathogenic nematode Heterorhabditis marelatus by a non-host organism, the isopod Porcellio scaber. Eng MS; Preisser EL; Strong DR J Invertebr Pathol; 2005 Feb; 88(2):173-6. PubMed ID: 15766935 [TBL] [Abstract][Full Text] [Related]
6. Hemocyte responses of the Colorado potato beetle, Leptinotarsa decemlineata, and the greater wax moth, Galleria mellonella, to the entomopathogenic nematodes, Steinernema feltiae and Heterorhabditis bacteriophora. Ebrahimi L; Niknam G; Dunphy GB J Insect Sci; 2011; 11():75. PubMed ID: 21867441 [TBL] [Abstract][Full Text] [Related]
7. Climate affects predator control of an herbivore outbreak. Preisser EL; Strong DR Am Nat; 2004 May; 163(5):754-62. PubMed ID: 15122492 [TBL] [Abstract][Full Text] [Related]
8. Scavenging behavior and interspecific competition decrease offspring fitness of the entomopathogenic nematode Steinernema feltiae. Blanco-Pérez R; Bueno-Pallero FÁ; Vicente-Díez I; Marco-Mancebón VS; Pérez-Moreno I; Campos-Herrera R J Invertebr Pathol; 2019 Jun; 164():5-15. PubMed ID: 30974088 [TBL] [Abstract][Full Text] [Related]
9. High mortality, fluctuation in numbers, and heavy subterranean insect herbivory in bush lupine, Lupinus arboreus. Strong DR; Maron JL; Connors PG; Whipple A; Harrison S; Jefferies RL Oecologia; 1995 Sep; 104(1):85-92. PubMed ID: 28306917 [TBL] [Abstract][Full Text] [Related]
10. Predation of entomopathogenic nematodes by Sancassania sp. (Acari: Acaridae). Karagoz M; Gulcu B; Cakmak I; Kaya HK; Hazir S Exp Appl Acarol; 2007; 43(2):85-95. PubMed ID: 17924198 [TBL] [Abstract][Full Text] [Related]
11. Entomopathogenic nematodes in insect cadaver formulations for the control of Rhipicephalus microplus (Acari: Ixodidae). Monteiro CM; Matos Rda S; Araújo LX; Campos R; Bittencourt VR; Dolinski C; Furlong J; Prata MC Vet Parasitol; 2014 Jul; 203(3-4):310-7. PubMed ID: 24836639 [TBL] [Abstract][Full Text] [Related]
12. Activity of superoxide dismutase in Galleria mellonella larvae infected with entomopathogenic nematodes Steinernema affinis and S. feltiae. Zółtowska K; Grochla P; Łopieńska-Biernat E Wiad Parazytol; 2006; 52(4):283-6. PubMed ID: 17432619 [TBL] [Abstract][Full Text] [Related]
13. Interaction of microbial populations in Steinernema (Steinernematidae, Nematoda) infected Galleria mellonella larvae. Walsh KT; Webster JM J Invertebr Pathol; 2003 Jun; 83(2):118-26. PubMed ID: 12788281 [TBL] [Abstract][Full Text] [Related]
14. Determining the adaptation potential of entomopathogenic nematode multiplication of Heterorhabditis riobravus and Steinernema carpocapsae (Rhabditida: Heterorhabditidae, Steinernematidae) in larvae of Alphitobius diaperinus (Coleoptera: Tenebrionidae) and Galleria mellonella (Lepidoptera: Pyralidae). Costa JC; Dias RJ; Morenz MJ Parasitol Res; 2007 Dec; 102(1):139-44. PubMed ID: 17846789 [TBL] [Abstract][Full Text] [Related]
15. Content of glycogen and trehalose and activity of alpha-amylase and trehalase in Galleria mellonella larvae infected with entomopathogenic nematodes Steinernema affinis and S. feltiae. Zółtowska K; Lopieńiska-Biernat E Wiad Parazytol; 2006; 52(2):103-7. PubMed ID: 17120991 [TBL] [Abstract][Full Text] [Related]
16. Infected host macerate enhances entomopathogenic nematode movement towards hosts and infectivity in a soil profile. Wu S; Kaplan F; Lewis E; Alborn HT; Shapiro-Ilan DI J Invertebr Pathol; 2018 Nov; 159():141-144. PubMed ID: 30336144 [TBL] [Abstract][Full Text] [Related]
17. Factors affecting entomopathogenic nematodes (Steinernematidae) for control of overwintering codling moth (Lepidoptera: Tortricidae) in fruit bins. Lacey LA; Neven LG; Headrick HL; Fritts R J Econ Entomol; 2005 Dec; 98(6):1863-9. PubMed ID: 16539105 [TBL] [Abstract][Full Text] [Related]
18. Effects of infected insects on secondary invasion of steinernematid entomopathogenic nematodes. Glazer I Parasitology; 1997 Jun; 114 ( Pt 6)():597-604. PubMed ID: 9172429 [TBL] [Abstract][Full Text] [Related]
19. Interference competition in entomopathogenic nematodes: male Steinernema kill members of their own and other species. O'Callaghan KM; Zenner AN; Hartley CJ; Griffin CT Int J Parasitol; 2014 Nov; 44(13):1009-17. PubMed ID: 25110292 [TBL] [Abstract][Full Text] [Related]
20. The influence of humidity on the effect of Steinernema feltiae against diapausing codling moth larvae (Cydia pomonella L.) (Lepidoptera: Tortricidae). Navaneethan T; Strauch O; Ehlers RU Commun Agric Appl Biol Sci; 2010; 75(3):265-71. PubMed ID: 21539244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]