BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 19694450)

  • 1. CHARMM additive all-atom force field for aldopentofuranoses, methyl-aldopentofuranosides, and fructofuranose.
    Hatcher E; Guvench O; Mackerell AD
    J Phys Chem B; 2009 Sep; 113(37):12466-76. PubMed ID: 19694450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methyl-aldopentofuranosides.
    Jana M; MacKerell AD
    J Phys Chem B; 2015 Jun; 119(25):7846-59. PubMed ID: 26018564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses.
    Raman EP; Guvench O; MacKerell AD
    J Phys Chem B; 2010 Oct; 114(40):12981-94. PubMed ID: 20845956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses.
    Guvench O; Hatcher ER; Venable RM; Pastor RW; Mackerell AD
    J Chem Theory Comput; 2009 Aug; 5(9):2353-2370. PubMed ID: 20161005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additive empirical force field for hexopyranose monosaccharides.
    Guvench O; Greene SN; Kamath G; Brady JW; Venable RM; Pastor RW; Mackerell AD
    J Comput Chem; 2008 Nov; 29(15):2543-64. PubMed ID: 18470966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CHARMM Drude Polarizable Force Field for Glycosidic Linkages Involving Pyranoses and Furanoses.
    Aytenfisu AH; Yang M; MacKerell AD
    J Chem Theory Comput; 2018 Jun; 14(6):3132-3143. PubMed ID: 29694037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A GROMOS Force Field for Furanose-Based Carbohydrates.
    Nester K; Gaweda K; Plazinski W
    J Chem Theory Comput; 2019 Feb; 15(2):1168-1186. PubMed ID: 30609362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CHARMM Additive All-Atom Force Field for Acyclic Polyalcohols, Acyclic Carbohydrates and Inositol.
    Hatcher E; Guvench O; Mackerell AD
    J Chem Theory Comput; 2009 Apr; 5(5):1315-1327. PubMed ID: 20160980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling.
    Guvench O; Mallajosyula SS; Raman EP; Hatcher E; Vanommeslaeghe K; Foster TJ; Jamison FW; Mackerell AD
    J Chem Theory Comput; 2011 Oct; 7(10):3162-3180. PubMed ID: 22125473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CHARMM Additive All-Atom Force Field for Phosphate and Sulfate Linked to Carbohydrates.
    Mallajosyula SS; Guvench O; Hatcher E; Mackerell AD
    J Chem Theory Comput; 2012 Feb; 8(2):759-776. PubMed ID: 22685386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-Atom Internal Coordinate Mechanics (ICM) Force Field for Hexopyranoses and Glycoproteins.
    Arnautova YA; Abagyan R; Totrov M
    J Chem Theory Comput; 2015 May; 11(5):2167-2186. PubMed ID: 25999804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-Deoxy-beta-D-erythro-pentofuranose: hydroxymethyl group conformation and substituent effects on molecular structure, ring geometry, and NMR spin-spin coupling constants from quantum chemical calculations.
    Cloran F; Carmichael I; Serianni AS
    J Am Chem Soc; 2001 May; 123(20):4781-91. PubMed ID: 11457288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extension of the CHARMM General Force Field to sulfonyl-containing compounds and its utility in biomolecular simulations.
    Yu W; He X; Vanommeslaeghe K; MacKerell AD
    J Comput Chem; 2012 Dec; 33(31):2451-68. PubMed ID: 22821581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parameterization and Application of the General Amber Force Field to Model Fluoro Substituted Furanose Moieties and Nucleosides.
    Escalante DE; Aldrich CC; Ferguson DM
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35565967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarizable empirical force field for hexopyranose monosaccharides based on the classical Drude oscillator.
    Patel DS; He X; MacKerell AD
    J Phys Chem B; 2015 Jan; 119(3):637-52. PubMed ID: 24564643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates.
    Small MC; Aytenfisu AH; Lin FY; He X; MacKerell AD
    J Comput Aided Mol Des; 2017 Apr; 31(4):349-363. PubMed ID: 28190218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarizable empirical force field for acyclic polyalcohols based on the classical Drude oscillator.
    He X; Lopes PE; Mackerell AD
    Biopolymers; 2013 Oct; 99(10):724-38. PubMed ID: 23703219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further Optimization and Validation of the Classical Drude Polarizable Protein Force Field.
    Lin FY; Huang J; Pandey P; Rupakheti C; Li J; Roux BT; MacKerell AD
    J Chem Theory Comput; 2020 May; 16(5):3221-3239. PubMed ID: 32282198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.