These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19694489)

  • 1. Kohn anomaly and electron-phonon interaction at the K-derived point of the brillouin zone of metallic nanotubes.
    Rafailov PM; Maultzsch J; Thomsen C; Dettlaff-Weglikowska U; Roth S
    Nano Lett; 2009 Sep; 9(9):3343-8. PubMed ID: 19694489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC; Yudasaka M; Dresselhaus MS
    J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene.
    Essig S; Marquardt CW; Vijayaraghavan A; Ganzhorn M; Dehm S; Hennrich F; Ou F; Green AA; Sciascia C; Bonaccorso F; Bohnen KP; Löhneysen Hv; Kappes MM; Ajayan PM; Hersam MC; Ferrari AC; Krupke R
    Nano Lett; 2010 May; 10(5):1589-94. PubMed ID: 20405819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon softening in individual metallic carbon nanotubes due to the Kohn Anomaly.
    Farhat H; Son H; Samsonidze GG; Reich S; Dresselhaus MS; Kong J
    Phys Rev Lett; 2007 Oct; 99(14):145506. PubMed ID: 17930687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling nonequilibrium phonon populations in single-walled carbon nanotubes.
    Steiner M; Qian H; Hartschuh A; Meixner AJ
    Nano Lett; 2007 Aug; 7(8):2239-42. PubMed ID: 17629345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion.
    Kim YA; Kojima M; Muramatsu H; Umemoto S; Watanabe T; Yoshida K; Sato K; Ikeda T; Hayashi T; Endo M; Terrones M; Dresselhaus MS
    Small; 2006 May; 2(5):667-76. PubMed ID: 17193105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube.
    Paulus GL; Wang QH; Ulissi ZW; McNicholas TP; Vijayaraghavan A; Shih CJ; Jin Z; Strano MS
    Small; 2013 Jun; 9(11):1954-63. PubMed ID: 23281165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doping and phonon renormalization in carbon nanotubes.
    Tsang JC; Freitag M; Perebeinos V; Liu J; Avouris P
    Nat Nanotechnol; 2007 Nov; 2(11):725-30. PubMed ID: 18654413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The problem of purifying single-walled carbon nanotubes.
    Vivekchand SR; Jayakanth R; Govindaraj A; Rao CN
    Small; 2005 Oct; 1(10):920-3. PubMed ID: 17193370
    [No Abstract]   [Full Text] [Related]  

  • 10. Direct observation of mode selective electron-phonon coupling in suspended carbon nanotubes.
    Bushmaker AW; Deshpande VV; Bockrath MW; Cronin SB
    Nano Lett; 2007 Dec; 7(12):3618-22. PubMed ID: 18020473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency dependence of the dielectrophoretic separation of single-walled carbon nanotubes.
    Hennrich F; Krupke R; Kappes MM; Löhneysen HV
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1166-71. PubMed ID: 16108444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Softening of the radial breathing mode in metallic carbon nanotubes.
    Farhat H; Sasaki K; Kalbac M; Hofmann M; Saito R; Dresselhaus MS; Kong J
    Phys Rev Lett; 2009 Mar; 102(12):126804. PubMed ID: 19392307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of energy/electron transfer in gold nanoclusters by single walled carbon nanotubes and further consequences.
    Das T; Maity A; Mondal S; Purkayastha P
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 141():144-8. PubMed ID: 25668695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene on metallic substrates: suppression of the Kohn Anomalies in the phonon dispersion.
    Allard A; Wirtz L
    Nano Lett; 2010 Nov; 10(11):4335-40. PubMed ID: 20929245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncovalent functionalization of DNA-wrapped single-walled carbon nanotubes with platinum-based DNA cross-linkers.
    Ostojic GN; Ireland JR; Hersam MC
    Langmuir; 2008 Sep; 24(17):9784-9. PubMed ID: 18646876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence of electron-to-lattice energy transfer in single-wall carbon nanotube bundles.
    Moos G; Fasel R; Hertel T
    J Nanosci Nanotechnol; 2003; 3(1-2):145-9. PubMed ID: 12908243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of electrodeposited single-walled carbon nanotube films.
    Kim SK; Choi HY; Lee HJ; Lee H
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3614-8. PubMed ID: 17252822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid acid-mediated purification of single-walled carbon nanotubes with homogenization of bulk properties.
    Li J; Chajara K; Lindgren J; Grennberg H
    J Nanosci Nanotechnol; 2007; 7(4-5):1525-9. PubMed ID: 17450921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.
    Muguruma H; Hoshino T; Nowaki K
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):584-92. PubMed ID: 25522366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon vibrational frequencies of all single-wall carbon nanotubes at the lambda point: reduced matrix calculations.
    Wang Y; Wu Y; Feng M; Wang H; Jin Q; Ding D; Cao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):1102-5. PubMed ID: 18472297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.