BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

743 related articles for article (PubMed ID: 19694581)

  • 1. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E
    Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M
    Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other Monte Carlo codes.
    Papadimitroulas P; Loudos G; Nikiforidis GC; Kagadis GC
    Med Phys; 2012 Aug; 39(8):5238-47. PubMed ID: 22894448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations.
    Pacilio M; Lanconelli N; Lo MS; Betti M; Montani L; Torres AL; Coca PM
    Med Phys; 2009 May; 36(5):1543-52. PubMed ID: 19544770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between an event-by-event Monte Carlo code, NOREC, and ETRAN for electron scaled point kernels between 20 keV and 1 MeV.
    Cho SH; Vassiliev ON; Horton JL
    Radiat Environ Biophys; 2007 Mar; 46(1):77-83. PubMed ID: 17219152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of photon energy deposition kernels and electron dose point kernels in water.
    Mainegra-Hing E; Rogers DW; Kawrakow I
    Med Phys; 2005 Mar; 32(3):685-99. PubMed ID: 15839340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE.
    Hocine N; Farlay D; Boivin G; Franck D; Agarande M
    Int J Radiat Biol; 2014 Nov; 90(11):953-8. PubMed ID: 25134542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo Evaluation of Auger Electron-Emitting Theranostic Radionuclides.
    Falzone N; Fernández-Varea JM; Flux G; Vallis KA
    J Nucl Med; 2015 Sep; 56(9):1441-6. PubMed ID: 26205298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of cellular S-values using Geant4-DNA: The effect of cell geometry.
    Šefl M; Incerti S; Papamichael G; Emfietzoglou D
    Appl Radiat Isot; 2015 Oct; 104():113-23. PubMed ID: 26159660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison between track-structure, condensed-history Monte Carlo simulations and MIRD cellular S-values.
    Tajik-Mansoury MA; Rajabi H; Mozdarani H
    Phys Med Biol; 2017 Mar; 62(5):N90-N106. PubMed ID: 28181480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microdosimetry of the Auger electron emitting 123I radionuclide using Geant4-DNA simulations.
    Fourie H; Newman RT; Slabbert JP
    Phys Med Biol; 2015 Apr; 60(8):3333-46. PubMed ID: 25825914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculations of dose point kernels of
    Tse J; Geoghegan S
    Med Phys; 2019 May; 46(5):2422-2429. PubMed ID: 30822361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular S-factors for low-energy electrons: a comparison of Monte Carlo simulations and continuous-slowing-down calculations.
    Emfietzoglou D; Kostarelos K; Hadjidoukas P; Bousis C; Fotopoulos A; Pathak A; Nikjoo H
    Int J Radiat Biol; 2008 Dec; 84(12):1034-44. PubMed ID: 19061127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorbed dose evaluation of Auger electron-emitting radionuclides: impact of input decay spectra on dose point kernels and S-values.
    Falzone N; Lee BQ; Fernández-Varea JM; Kartsonaki C; Stuchbery AE; Kibédi T; Vallis KA
    Phys Med Biol; 2017 Mar; 62(6):2239-2253. PubMed ID: 28102829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system.
    Stewart RD; Wilson WE; McDonald JC; Strom DJ
    Phys Med Biol; 2002 Jan; 47(1):79-88. PubMed ID: 11814229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo assessment of low energy electron range in liquid water and dosimetry effects.
    Seniwal B; Mendes BM; Malano F; Pérez P; Valente M; Fonseca TCF
    Phys Med; 2020 Dec; 80():363-372. PubMed ID: 33285337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementing dosimetry in GATE: dose-point kernel validation with GEANT4 4.8.1.
    Ferrer L; Chouin N; Bitar A; Lisbona A; Bardiès M
    Cancer Biother Radiopharm; 2007 Feb; 22(1):125-9. PubMed ID: 17461728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose point kernel simulation for monoenergetic electrons and radionuclides using Monte Carlo techniques.
    Wu J; Liu YL; Chang SJ; Chao MM; Tsai SY; Huang DE
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):119-24. PubMed ID: 22923242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple scattering of 13 and 20 MeV electrons by thin foils: a Monte Carlo study with GEANT, Geant4, and PENELOPE.
    Vilches M; García-Pareja S; Guerrero R; Anguiano M; Lallena AM
    Med Phys; 2009 Sep; 36(9):3964-70. PubMed ID: 19810469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Monte Carlo study of cellular S-factors for 1 keV to 1 MeV electrons.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2009 Aug; 54(16):5023-38. PubMed ID: 19652289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.