These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 19695273)

  • 1. Force-field adaptation without proprioception: can vision be used to model limb dynamics?
    Sarlegna FR; Malfait N; Bringoux L; Bourdin C; Vercher JL
    Neuropsychologia; 2010 Jan; 48(1):60-7. PubMed ID: 19695273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalization of force-field adaptation in proprioceptively-deafferented subjects.
    Lefumat HZ; Miall RC; Cole JD; Bringoux L; Bourdin C; Vercher JL; Sarlegna FR
    Neurosci Lett; 2016 Mar; 616():160-5. PubMed ID: 26826606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy.
    Miall RC; Kitchen NM; Nam SH; Lefumat H; Renault AG; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2018 Aug; 236(8):2137-2155. PubMed ID: 29779050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociating the Influence of Limb Posture and Visual Feedback Shifts on the Adaptation to Novel Movement Dynamics.
    Fitzgerald JJ; Zhou W; Chase SM; Joiner WM
    Neuroscience; 2024 Jun; 549():24-41. PubMed ID: 38484835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arm-trunk coordination in the absence of proprioception.
    Tunik E; Poizner H; Levin MF; Adamovich SV; Messier J; Lamarre Y; Feldman AG
    Exp Brain Res; 2003 Dec; 153(3):343-55. PubMed ID: 14504854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of visuomotor-map uncertainty on visuomotor adaptation.
    Saijo N; Gomi H
    J Neurophysiol; 2012 Mar; 107(6):1576-85. PubMed ID: 22190631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is visual-based, online control of manual-aiming movements disturbed when adapting to new movement dynamics?
    Mackrous I; Proteau L
    Vision Res; 2015 May; 110(Pt B):223-32. PubMed ID: 24874948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of visuomotor adaptation on proprioceptive localization: the contributions of perceptual and motor changes.
    Clayton HA; Cressman EK; Henriques DY
    Exp Brain Res; 2014 Jul; 232(7):2073-86. PubMed ID: 24623356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.
    Botzer L; Karniel A
    Eur J Neurosci; 2013 Jul; 38(1):2108-23. PubMed ID: 23701418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target modality affects visually guided online control of reaching.
    Cameron BD; López-Moliner J
    Vision Res; 2015 May; 110(Pt B):233-43. PubMed ID: 24997229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.
    Batcho CS; Gagné M; Bouyer LJ; Roy JS; Mercier C
    Neuroscience; 2016 Nov; 337():267-275. PubMed ID: 27646292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of movement speed on accuracy and coordination of reaching movements to memorized targets in three-dimensional space in a deafferented subject.
    Messier J; Adamovich S; Berkinblit M; Tunik E; Poizner H
    Exp Brain Res; 2003 Jun; 150(4):399-416. PubMed ID: 12739083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements.
    Maschke M; Gomez CM; Ebner TJ; Konczak J
    J Neurophysiol; 2004 Jan; 91(1):230-8. PubMed ID: 13679403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. To transfer or not to transfer? Kinematics and laterality quotient predict interlimb transfer of motor learning.
    Lefumat HZ; Vercher JL; Miall RC; Cole J; Buloup F; Bringoux L; Bourdin C; Sarlegna FR
    J Neurophysiol; 2015 Nov; 114(5):2764-74. PubMed ID: 26334018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of sensory information in updating internal models of the effector during arm tracking.
    Vercher JL; Sarès F; Blouin J; Bourdin C; Gauthier G
    Prog Brain Res; 2003; 142():203-22. PubMed ID: 12693263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro movements of the upper limb in fibromyalgia: The relation to proprioceptive accuracy and visual feedback.
    Bardal EM; Roeleveld K; Ihlen E; Mork PJ
    J Electromyogr Kinesiol; 2016 Feb; 26():1-7. PubMed ID: 26790141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Updating of an internal model without proprioception: a deafferentation study.
    Bernier PM; Chua R; Bard C; Franks IM
    Neuroreport; 2006 Sep; 17(13):1421-5. PubMed ID: 16932151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.