BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19695293)

  • 1. Yeast prion [PSI+] lowers the levels of mitochondrial prohibitins.
    Sikora J; Towpik J; Graczyk D; Kistowski M; Rubel T; Poznanski J; Langridge J; Hughes C; Dadlez M; Boguta M
    Biochim Biophys Acta; 2009 Nov; 1793(11):1703-9. PubMed ID: 19695293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prion-dependent switching between respiratory competence and deficiency in the yeast nam9-1 mutant.
    Chacinska A; Boguta M; Krzewska J; Rospert S
    Mol Cell Biol; 2000 Oct; 20(19):7220-9. PubMed ID: 10982839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria.
    Roloff GA; Henry MF
    Mol Biol Cell; 2015 Aug; 26(16):2885-94. PubMed ID: 26108620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of MDM33 with mitochondrial inner membrane homeostasis pathways in yeast.
    Klecker T; Wemmer M; Haag M; Weig A; Böckler S; Langer T; Nunnari J; Westermann B
    Sci Rep; 2015 Dec; 5():18344. PubMed ID: 26669658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prohibitins and Ras2 protein cooperate in the maintenance of mitochondrial function during yeast aging.
    Kirchman PA; Miceli MV; West RL; Jiang JC; Kim S; Jazwinski SM
    Acta Biochim Pol; 2003; 50(4):1039-56. PubMed ID: 14739993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The [PSI
    Chan PHW; Lee L; Kim E; Hui T; Stoynov N; Nassar R; Moksa M; Cameron DM; Hirst M; Gsponer J; Mayor T
    Sci Rep; 2017 Aug; 7(1):8442. PubMed ID: 28814753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cytosol-synthesized subunit II (Cox2) precursor with the point mutation W56R is correctly processed in yeast mitochondria to rescue cytochrome oxidase.
    Cruz-Torres V; Vázquez-Acevedo M; García-Villegas R; Pérez-Martínez X; Mendoza-Hernández G; González-Halphen D
    Biochim Biophys Acta; 2012 Dec; 1817(12):2128-39. PubMed ID: 22985601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Quantification of the curing effects of phenanthridine on yeast prion [PSI+]].
    Zhong Z; Wang L; Xie H; Li H; He J; Song Y
    Sheng Wu Gong Cheng Xue Bao; 2012 Jun; 28(6):737-46. PubMed ID: 23016310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The shortened replicative life span of prohibitin mutants of yeast appears to be due to defective mitochondrial segregation in old mother cells.
    Piper PW; Jones GW; Bringloe D; Harris N; MacLean M; Mollapour M
    Aging Cell; 2002 Dec; 1(2):149-57. PubMed ID: 12882345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial disease genes COA6, COX6B and SCO2 have overlapping roles in COX2 biogenesis.
    Ghosh A; Pratt AT; Soma S; Theriault SG; Griffin AT; Trivedi PP; Gohil VM
    Hum Mol Genet; 2016 Feb; 25(4):660-71. PubMed ID: 26669719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple roles of the Cox20 chaperone in assembly of Saccharomyces cerevisiae cytochrome c oxidase.
    Elliott LE; Saracco SA; Fox TD
    Genetics; 2012 Feb; 190(2):559-67. PubMed ID: 22095077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic control of polyamines by the prion [PSI+].
    Namy O; Galopier A; Martini C; Matsufuji S; Fabret C; Rousset JP
    Nat Cell Biol; 2008 Sep; 10(9):1069-75. PubMed ID: 19160487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mutation within the C-terminal domain of Sup35p that affects [PSI+] prion propagation.
    Kabani M; Cosnier B; Bousset L; Rousset JP; Melki R; Fabret C
    Mol Microbiol; 2011 Aug; 81(3):640-58. PubMed ID: 21631606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The [PSI
    Saini PK; Dawitz H; Aufschnaiter A; Bondarev S; Thomas J; Amblard A; Stewart J; Thierry-Mieg N; Ott M; Pierrel F
    Mol Biol Cell; 2022 Dec; 33(14):ar130. PubMed ID: 36129767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Association between defects of karyogamy and translation termination in yeast Saccharomyces cerevisiae].
    Borchsenius AS; Repnevskaia MV; Kurischko C; Inge-Vechtomov SG
    Genetika; 2005 Feb; 41(2):178-86. PubMed ID: 15810607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Modification of [PSI+] prion properties by the combination of amino acid changes within Sup35 protein N-domain].
    Bondarev SA; Shirokolobova ED; Trubitsyna NP; Zhuravleva GA
    Mol Biol (Mosk); 2014; 48(2):314-21. PubMed ID: 25850301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of a novel dispensable mitochondrial ribosomal small-subunit protein, Rsm28p, allows translation of defective COX2 mRNAs.
    Williams EH; Bsat N; Bonnefoy N; Butler CA; Fox TD
    Eukaryot Cell; 2005 Feb; 4(2):337-45. PubMed ID: 15701796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key within-membrane residues and precursor dosage impact the allotopic expression of yeast subunit II of cytochrome
    Rubalcava-Gracia D; García-Rincón J; Pérez-Montfort R; Hamel PP; González-Halphen D
    Mol Biol Cell; 2019 Aug; 30(18):2358-2366. PubMed ID: 31318312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal domain of yeast Hsp104 chaperone is dispensable for thermotolerance and prion propagation but necessary for curing prions by Hsp104 overexpression.
    Hung GC; Masison DC
    Genetics; 2006 Jun; 173(2):611-20. PubMed ID: 16582428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of the COX2 translational activator, Pet111p, prevents translation of COX1 mRNA and cytochrome c oxidase assembly in mitochondria of Saccharomyces cerevisiae.
    Fiori A; Perez-Martinez X; Fox TD
    Mol Microbiol; 2005 Jun; 56(6):1689-704. PubMed ID: 15916616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.