BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19695296)

  • 21. Metabolic evolution of non-transgenic Escherichia coli SZ420 for enhanced homoethanol fermentation from xylose.
    Chen K; Iverson AG; Garza EA; Grayburn WS; Zhou S
    Biotechnol Lett; 2010 Jan; 32(1):87-96. PubMed ID: 19728107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum.
    Wu Y; Yang Y; Ren C; Yang C; Yang S; Gu Y; Jiang W
    Metab Eng; 2015 Mar; 28():169-179. PubMed ID: 25637046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum.
    Ren C; Gu Y; Hu S; Wu Y; Wang P; Yang Y; Yang C; Yang S; Jiang W
    Metab Eng; 2010 Sep; 12(5):446-54. PubMed ID: 20478391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic modeling to optimize pentose fermentation in Zymomonas mobilis.
    Altintas MM; Eddy CK; Zhang M; McMillan JD; Kompala DS
    Biotechnol Bioeng; 2006 Jun; 94(2):273-95. PubMed ID: 16570322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shotgun proteomic monitoring of Clostridium acetobutylicum during stationary phase of butanol fermentation using xylose and comparison with the exponential phase.
    Sivagnanam K; Raghavan VG; Shah M; Hettich RL; Verberkmoes NC; Lefsrud MG
    J Ind Microbiol Biotechnol; 2012 Jun; 39(6):949-55. PubMed ID: 22395897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering transaldolase in Pichia stipitis to improve bioethanol production.
    Chen SH; Hwang DR; Chen GH; Hsu NS; Wu YT; Li TL; Wong CH
    ACS Chem Biol; 2012 Mar; 7(3):481-6. PubMed ID: 22148723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hierarchy in pentose sugar metabolism in Clostridium acetobutylicum.
    Aristilde L; Lewis IA; Park JO; Rabinowitz JD
    Appl Environ Microbiol; 2015 Feb; 81(4):1452-62. PubMed ID: 25527534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli.
    Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA
    Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The acetone butanol fermentation on glucose and xylose. II. Regulation and kinetics in fed-batch cultures.
    Fond O; Engasser JM; Matta-El-Amouri G; Petitdemange H
    Biotechnol Bioeng; 1986 Feb; 28(2):167-75. PubMed ID: 18555311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous xylose fermentation by Clostridium acetobutylicum--kinetics and energetics issues under acidogenesis conditions.
    Procentese A; Raganati F; Olivieri G; Russo ME; Salatino P; Marzocchella A
    Bioresour Technol; 2014 Jul; 164():155-61. PubMed ID: 24852648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain.
    Kuyper M; Toirkens MJ; Diderich JA; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2005 Jul; 5(10):925-34. PubMed ID: 15949975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli.
    Inui M; Suda M; Kimura S; Yasuda K; Suzuki H; Toda H; Yamamoto S; Okino S; Suzuki N; Yukawa H
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1305-16. PubMed ID: 18060402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed by 13C metabolic flux analysis.
    Liu L; Zhang L; Tang W; Gu Y; Hua Q; Yang S; Jiang W; Yang C
    J Bacteriol; 2012 Oct; 194(19):5413-22. PubMed ID: 22865845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolite analysis of Clostridium acetobutylicum: fermentation in a microbial fuel cell.
    Finch AS; Mackie TD; Sund CJ; Sumner JJ
    Bioresour Technol; 2011 Jan; 102(1):312-5. PubMed ID: 20655198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effect of different carbon sources on pyruvic acid production by using lpdA gene knockout Escherichia coli].
    Shen D; Feng X; Lin D; Yao S
    Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1345-51. PubMed ID: 19938477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.
    Kuyper M; Hartog MM; Toirkens MJ; Almering MJ; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2005 Feb; 5(4-5):399-409. PubMed ID: 15691745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The characterization of transaldolase gene tal from Pichia stipitis and its heterologous expression in Fusarium oxysporum.
    Fan JX; Yang Q; Liu ZH; Huang XM; Song JZ; Chen ZX; Sun Y; Liang Q; Wang S
    Mol Biol Rep; 2011 Mar; 38(3):1831-40. PubMed ID: 20845075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid.
    Dien BS; Nichols NN; Bothast RJ
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):221-7. PubMed ID: 12407454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biosynthesis of enantiopure (S)-3-hydroxybutyric acid in metabolically engineered Escherichia coli.
    Lee SH; Park SJ; Lee SY; Hong SH
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):633-41. PubMed ID: 18461320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.