BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19695296)

  • 41. Genetic sensor-regulators functional in Clostridia.
    Han S; Kim Y; Karanjikar M; San KY; Bennett GN
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):609-620. PubMed ID: 32851482
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production.
    Jo S; Yoon J; Lee SM; Um Y; Han SO; Woo HM
    J Biotechnol; 2017 Sep; 258():69-78. PubMed ID: 28153765
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
    Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC
    Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose.
    Eiteman MA; Lee SA; Altman R; Altman E
    Biotechnol Bioeng; 2009 Feb; 102(3):822-7. PubMed ID: 18828178
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018.
    Hu S; Zheng H; Gu Y; Zhao J; Zhang W; Yang Y; Wang S; Zhao G; Yang S; Jiang W
    BMC Genomics; 2011 Feb; 12():93. PubMed ID: 21284892
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli.
    Andersson C; Hodge D; Berglund KA; Rova U
    Biotechnol Prog; 2007; 23(2):381-8. PubMed ID: 17253726
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis.
    Dunn KL; Rao CV
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6897-905. PubMed ID: 24839214
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes.
    Bao X; Gao D; Qu Y; Wang Z; Walfridssion M; Hahn-Hagerbal B
    Chin J Biotechnol; 1997; 13(4):225-31. PubMed ID: 9631257
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain.
    Pitkänen JP; Rintala E; Aristidou A; Ruohonen L; Penttilä M
    Appl Microbiol Biotechnol; 2005 Jun; 67(6):827-37. PubMed ID: 15630585
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum.
    Kawaguchi H; Sasaki M; Vertès AA; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1053-62. PubMed ID: 17965859
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genetic engineering of Zymobacter palmae for production of ethanol from xylose.
    Yanase H; Sato D; Yamamoto K; Matsuda S; Yamamoto S; Okamoto K
    Appl Environ Microbiol; 2007 Apr; 73(8):2592-9. PubMed ID: 17308178
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of PTS(Fru) as the major fructose uptake system of Clostridium acetobutylicum.
    Voigt C; Bahl H; Fischer RJ
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):7161-72. PubMed ID: 24841119
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions.
    Sasaki M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):691-9. PubMed ID: 18810427
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose.
    Vinuselvi P; Lee SK
    Enzyme Microb Technol; 2012 Jan; 50(1):1-4. PubMed ID: 22133432
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824.
    Servinsky MD; Germane KL; Liu S; Kiel JT; Clark AM; Shankar J; Sund CJ
    J Ind Microbiol Biotechnol; 2012 Dec; 39(12):1859-67. PubMed ID: 22922942
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Feasibility of installing and maintaining anaerobiosis using Escherichia coli HD701 as a facultative anaerobe for hydrogen production by Clostridium acetobutylicum ATCC 824 from various carbohydrates.
    Hassan SH; Morsy FM
    Enzyme Microb Technol; 2015 Dec; 81():56-62. PubMed ID: 26453472
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures.
    Cirino PC; Chin JW; Ingram LO
    Biotechnol Bioeng; 2006 Dec; 95(6):1167-76. PubMed ID: 16838379
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Alleviation of Carbon Catabolite Repression through
    Delarouzée A; Lopes Ferreira N; Wasels F
    Appl Environ Microbiol; 2023 Mar; 89(3):e0213522. PubMed ID: 36779716
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.
    Sillers R; Al-Hinai MA; Papoutsakis ET
    Biotechnol Bioeng; 2009 Jan; 102(1):38-49. PubMed ID: 18726959
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Accumulation of d-glucose from pentoses by metabolically engineered Escherichia coli.
    Xia T; Han Q; Costanzo WV; Zhu Y; Urbauer JL; Eiteman MA
    Appl Environ Microbiol; 2015 May; 81(10):3387-94. PubMed ID: 25746993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.