These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Silicon substitution in the calcium phosphate bioceramics. Pietak AM; Reid JW; Stott MJ; Sayer M Biomaterials; 2007 Oct; 28(28):4023-32. PubMed ID: 17544500 [TBL] [Abstract][Full Text] [Related]
3. Electron spin resonance in silicon substituted apatite and tricalcium phosphate. Pietak AM; Reid JW; Sayer M Biomaterials; 2005 Jun; 26(18):3819-30. PubMed ID: 15626430 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of single-phase silicon-substituted alpha-tricalcium phosphate. Reid JW; Tuck L; Sayer M; Fargo K; Hendry JA Biomaterials; 2006 May; 27(15):2916-25. PubMed ID: 16448694 [TBL] [Abstract][Full Text] [Related]
5. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. Kamitakahara M; Ohtsuki C; Miyazaki T J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965 [TBL] [Abstract][Full Text] [Related]
6. Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system. Reid JW; Pietak A; Sayer M; Dunfield D; Smith TJ Biomaterials; 2005 Jun; 26(16):2887-97. PubMed ID: 15603784 [TBL] [Abstract][Full Text] [Related]
7. Total attenuated reflection infrared analysis of silicon-stabilized tri-calcium phosphate. Dunfield D; Sayer M; Shurvell HF J Phys Chem B; 2005 Oct; 109(42):19579-83. PubMed ID: 16853532 [TBL] [Abstract][Full Text] [Related]
8. Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition. Porter AE Micron; 2006; 37(8):681-8. PubMed ID: 16632368 [TBL] [Abstract][Full Text] [Related]
9. Silicon-stabilized α-tricalcium phosphate and its use in a calcium phosphate cement: characterization and cell response. Mestres G; Le Van C; Ginebra MP Acta Biomater; 2012 Mar; 8(3):1169-79. PubMed ID: 22154863 [TBL] [Abstract][Full Text] [Related]
10. Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration. Khan AF; Saleem M; Afzal A; Ali A; Khan A; Khan AR Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():245-52. PubMed ID: 24411375 [TBL] [Abstract][Full Text] [Related]
11. Formation of osteoclast-like cells on HA and TCP ceramics. Detsch R; Mayr H; Ziegler G Acta Biomater; 2008 Jan; 4(1):139-48. PubMed ID: 17723325 [TBL] [Abstract][Full Text] [Related]
12. Influence of Si substitution on the reactivity of α-tricalcium phosphate. Motisuke M; Mestres G; Renó CO; Carrodeguas RG; Zavaglia CAC; Ginebra MP Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():816-821. PubMed ID: 28415534 [TBL] [Abstract][Full Text] [Related]
13. Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications. Porter AE; Best SM; Bonfield W J Biomed Mater Res A; 2004 Jan; 68(1):133-41. PubMed ID: 14661258 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of calcium disilicide-induced calcification of crystalline silicon surfaces in simulated body fluid under zero bias. Seregin VV; Coffer JL J Biomed Mater Res A; 2008 Oct; 87(1):15-24. PubMed ID: 18080303 [TBL] [Abstract][Full Text] [Related]
15. Effect of temperature on crystallinity of carbonate apatite foam prepared from alpha-tricalcium phosphate by hydrothermal treatment. Takeuchi A; Munar ML; Wakae H; Maruta M; Matsuya S; Tsuru K; Ishikawa K Biomed Mater Eng; 2009; 19(2-3):205-11. PubMed ID: 19581715 [TBL] [Abstract][Full Text] [Related]
16. Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: a multi-technique study. Gomes S; Renaudin G; Mesbah A; Jallot E; Bonhomme C; Babonneau F; Nedelec JM Acta Biomater; 2010 Aug; 6(8):3264-74. PubMed ID: 20188871 [TBL] [Abstract][Full Text] [Related]
17. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. Ni S; Chang J J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of macroporous carbonate apatite foam by hydrothermal conversion of alpha-tricalcium phosphate in carbonate solutions. Wakae H; Takeuchi A; Udoh K; Matsuya S; Munar ML; LeGeros RZ; Nakasima A; Ishikawa K J Biomed Mater Res A; 2008 Dec; 87(4):957-63. PubMed ID: 18257056 [TBL] [Abstract][Full Text] [Related]
19. Material characterization and in vivo behavior of silicon substituted alpha-tricalcium phosphate cement. Camiré CL; Saint-Jean SJ; Mochales C; Nevsten P; Wang JS; Lidgren L; McCarthy I; Ginebra MP J Biomed Mater Res B Appl Biomater; 2006 Feb; 76(2):424-31. PubMed ID: 16184531 [TBL] [Abstract][Full Text] [Related]
20. Structure and composition of silicon-stabilized tricalcium phosphate. Sayer M; Stratilatov AD; Reid J; Calderin L; Stott MJ; Yin X; MacKenzie M; Smith TJ; Hendry JA; Langstaff SD Biomaterials; 2003 Feb; 24(3):369-82. PubMed ID: 12423592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]