These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 19695699)

  • 21. Osteoinduction by biomaterials--physicochemical and structural influences.
    Habibovic P; Sees TM; van den Doel MA; van Blitterswijk CA; de Groot K
    J Biomed Mater Res A; 2006 Jun; 77(4):747-62. PubMed ID: 16557498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silicon-calcium phosphate ceramics and silicon-calcium phosphate cements: Substrates to customize the release of antibiotics according to the idiosyncrasies of the patient.
    Lucas-Aparicio J; Manchón Á; Rueda C; Pintado C; Torres J; Alkhraisat MH; López-Cabarcos E
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110173. PubMed ID: 31753390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and characterization of beta-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions.
    Matsumoto N; Sato K; Yoshida K; Hashimoto K; Toda Y
    Acta Biomater; 2009 Oct; 5(8):3157-64. PubMed ID: 19435618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone implants.
    Vecchio KS; Zhang X; Massie JB; Wang M; Kim CW
    Acta Biomater; 2007 Sep; 3(5):785-93. PubMed ID: 17512809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and performance analysis of Si-CaP/fine particulate bone powder combined grafts for bone regeneration.
    Sun C; Tian Y; Xu W; Zhou C; Xie H; Wang X
    Biomed Eng Online; 2015 May; 14():47. PubMed ID: 26001383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Do Ca2+-adsorbing ceramics reduce the release of calcium ions from gypsum-based biomaterials?
    Belcarz A; Zalewska J; Pałka K; Hajnos M; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():256-65. PubMed ID: 25492196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentiation of mononuclear precursors into osteoclasts on the surface of Si-substituted hydroxyapatite.
    Botelho CM; Brooks RA; Spence G; McFarlane I; Lopes MA; Best SM; Santos JD; Rushton N; Bonfield W
    J Biomed Mater Res A; 2006 Sep; 78(4):709-20. PubMed ID: 16739170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical insights into bone grafting silicon-stabilized alpha-tricalcium phosphate.
    Yin X; Stott MJ
    J Chem Phys; 2005 Jan; 122(2):024709. PubMed ID: 15638616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro osteoclast formation and resorption of silicon-substituted hydroxyapatite ceramics.
    Friederichs RJ; Brooks RA; Ueda M; Best SM
    J Biomed Mater Res A; 2015 Oct; 103(10):3312-22. PubMed ID: 25847383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissolution rate of zinc-containing beta-tricalcium phosphate ceramics.
    Ito A; Senda K; Sogo Y; Oyane A; Yamazaki A; Legeros RZ
    Biomed Mater; 2006 Sep; 1(3):134-9. PubMed ID: 18458394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface and adsorption properties of alpha-tricalcium phosphate.
    Yin X; Stott MJ
    J Chem Phys; 2006 Mar; 124(12):124701. PubMed ID: 16599712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanosized and nanocrystalline calcium orthophosphates.
    Dorozhkin SV
    Acta Biomater; 2010 Mar; 6(3):715-34. PubMed ID: 19861183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds.
    Hing KA; Revell PA; Smith N; Buckland T
    Biomaterials; 2006 Oct; 27(29):5014-26. PubMed ID: 16790272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bias-assisted in vitro calcification of calcium disilicide growth layers on spark-processed silicon.
    Seregin VV; Coffer JL
    Biomaterials; 2006 Jul; 27(20):3726-37. PubMed ID: 16564571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone.
    Tadic D; Epple M
    Biomaterials; 2004 Mar; 25(6):987-94. PubMed ID: 14615163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ionic substitutions in calcium phosphates synthesized at low temperature.
    Boanini E; Gazzano M; Bigi A
    Acta Biomater; 2010 Jun; 6(6):1882-94. PubMed ID: 20040384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variation of the bone forming ability with the physicochemical properties of calcium phosphate bone substitutes.
    Duan R; Barbieri D; Luo X; Weng J; Bao C; de Bruijn JD; Yuan H
    Biomater Sci; 2017 Dec; 6(1):136-145. PubMed ID: 29147713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in synthesis of calcium phosphate crystals with controlled size and shape.
    Lin K; Wu C; Chang J
    Acta Biomater; 2014 Oct; 10(10):4071-102. PubMed ID: 24954909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transient precursor strategy or very small biological apatite crystals?
    Grynpas MD; Omelon S
    Bone; 2007 Aug; 41(2):162-4. PubMed ID: 17537689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nano-beta-tricalcium phosphates synthesis and biodegradation: 1. Effect of microwave and SO(4)(2-) ions on beta-TCP synthesis and its characterization.
    Abdel-Fattah WI; Reicha FM; Elkhooly TA
    Biomed Mater; 2008 Sep; 3(3):034121. PubMed ID: 18765896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.