These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19695991)

  • 1. Standing-wave suppression for transcranial ultrasound by random modulation.
    Tang SC; Clement GT
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):203-5. PubMed ID: 19695991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of standing-wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided focused ultrasound (MRgFUS) phased array: an experimental and simulation study.
    Song J; Pulkkinen A; Huang Y; Hynynen K
    IEEE Trans Biomed Eng; 2012 Feb; 59(2):435-44. PubMed ID: 22049360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcranial shear-mode ultrasound: assessment of imaging performance and excitation techniques.
    Yousefi A; Goertz DE; Hynynen K
    IEEE Trans Med Imaging; 2009 May; 28(5):763-74. PubMed ID: 19150789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study of a simple transcranial focused ultrasound system applied to blood-brain barrier opening.
    Deffieux T; Konofagou EE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2637-53. PubMed ID: 21156360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound.
    Mueller JK; Ai L; Bansal P; Legon W
    J Neural Eng; 2017 Dec; 14(6):066012. PubMed ID: 28777075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local frequency dependence in transcranial ultrasound transmission.
    White PJ; Clement GT; Hynynen K
    Phys Med Biol; 2006 May; 51(9):2293-305. PubMed ID: 16625043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substantial fluctuation of acoustic intensity transmittance through a bone-phantom plate and its equalization by modulation of ultrasound frequency.
    Saito O; Wang Z; Mitsumura H; Ogawa T; Iguchi Y; Yokoyama M
    Ultrasonics; 2015 May; 59():94-101. PubMed ID: 25702201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chirp- and random-based coded ultrasonic excitation for localized blood-brain barrier opening.
    Kamimura HA; Wang S; Wu SY; Karakatsani ME; Acosta C; Carneiro AA; Konofagou EE
    Phys Med Biol; 2015 Oct; 60(19):7695-712. PubMed ID: 26394091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computer-controlled ultrasound pulser-receiver system for transskull fluid detection using a shear wave transmission technique.
    Tang SC; Clement GT; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1772-83. PubMed ID: 17941383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature.
    Gâteau J; Marsac L; Pernot M; Aubry JF; Tanter M; Fink M
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):134-44. PubMed ID: 19770084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping.
    Deng L; O'Reilly MA; Jones RM; An R; Hynynen K
    Phys Med Biol; 2016 Dec; 61(24):8476-8501. PubMed ID: 27845920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of Guided Acoustic Waves in a Human Skull.
    Estrada H; Gottschalk S; Reiss M; Neuschmelting V; Goldbrunner R; Razansky D
    Ultrasound Med Biol; 2018 Nov; 44(11):2388-2392. PubMed ID: 30093337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of standing wave reduction methods using random modulation for transcranial ultrasonication.
    Furuhata H; Saito O
    Ultrasound Med Biol; 2013 Aug; 39(8):1440-50. PubMed ID: 23743103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler.
    Errico C; Osmanski BF; Pezet S; Couture O; Lenkei Z; Tanter M
    Neuroimage; 2016 Jan; 124(Pt A):752-761. PubMed ID: 26416649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Characterization of an Acoustically and Structurally Matched 3-D-Printed Model for Transcranial Ultrasound Imaging.
    Bai C; Ji M; Bouakaz A; Zong Y; Wan M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 May; 65(5):741-748. PubMed ID: 29733278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of ultrasound propagation through ex-vivo human temporal bone.
    Ammi AY; Mast TD; Huang IH; Abruzzo TA; Coussios CC; Shaw GJ; Holland CK
    Ultrasound Med Biol; 2008 Oct; 34(10):1578-89. PubMed ID: 18456391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of image homogenisation on simulated transcranial ultrasound propagation.
    Robertson J; Urban J; Stitzel J; Treeby BE
    Phys Med Biol; 2018 Jul; 63(14):145014. PubMed ID: 29897047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical note: High-efficient and wireless transcranial ultrasound excitation based on electromagnetic acoustic transducer.
    Huang L; Qiao S; Ling W; Wang W; Feng Q; Cao J; Luo Y
    Med Phys; 2024 Jan; 51(1):662-669. PubMed ID: 37815210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An uncovered risk factor of sonothrombolysis: Substantial fluctuation of ultrasound transmittance through the human skull.
    Wang Z; Komatsu T; Mitsumura H; Nakata N; Ogawa T; Iguchi Y; Yokoyama M
    Ultrasonics; 2017 May; 77():168-175. PubMed ID: 28242510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of standing wave effects on transcranial focused ultrasound disruption of the blood-brain barrier in a rat model.
    O'Reilly MA; Huang Y; Hynynen K
    Phys Med Biol; 2010 Sep; 55(18):5251-67. PubMed ID: 20720286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.