These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 19696175)
21. Finite element modeling of optic nerve head biomechanics. Sigal IA; Flanagan JG; Tertinegg I; Ethier CR Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4378-87. PubMed ID: 15557446 [TBL] [Abstract][Full Text] [Related]
22. The optic nerve head as a biomechanical structure: initial finite element modeling. Bellezza AJ; Hart RT; Burgoyne CF Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2991-3000. PubMed ID: 10967056 [TBL] [Abstract][Full Text] [Related]
23. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Norman RE; Flanagan JG; Sigal IA; Rausch SM; Tertinegg I; Ethier CR Exp Eye Res; 2011 Jul; 93(1):4-12. PubMed ID: 20883693 [TBL] [Abstract][Full Text] [Related]
24. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping. Yang H; Downs JC; Bellezza A; Thompson H; Burgoyne CF Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5068-84. PubMed ID: 17962459 [TBL] [Abstract][Full Text] [Related]
25. Variation in the Three-Dimensional Histomorphometry of the Normal Human Optic Nerve Head With Age and Race: Lamina Cribrosa and Peripapillary Scleral Thickness and Position. Girkin CA; Fazio MA; Yang H; Reynaud J; Burgoyne CF; Smith B; Wang L; Downs JC Invest Ophthalmol Vis Sci; 2017 Jul; 58(9):3759-3769. PubMed ID: 28738420 [TBL] [Abstract][Full Text] [Related]
26. IOP-induced lamina cribrosa displacement and scleral canal expansion: an analysis of factor interactions using parameterized eye-specific models. Sigal IA; Yang H; Roberts MD; Burgoyne CF; Downs JC Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1896-907. PubMed ID: 20881292 [TBL] [Abstract][Full Text] [Related]
27. Factors associated with lamina cribrosa displacement after trabeculectomy measured by optical coherence tomography in advanced primary open-angle glaucoma. Esfandiari H; Efatizadeh A; Hassanpour K; Doozandeh A; Yaseri M; Loewen NA Graefes Arch Clin Exp Ophthalmol; 2018 Dec; 256(12):2391-2398. PubMed ID: 30251201 [TBL] [Abstract][Full Text] [Related]
28. Strain by virtual extensometers and video-imaging optical coherence tomography as a repeatable metric for IOP-Induced optic nerve head deformations. Kim J; Gardiner SK; Ramazzotti A; Karuppanan U; Bruno L; Girkin CA; Downs JC; Fazio MA Exp Eye Res; 2021 Oct; 211():108724. PubMed ID: 34375590 [TBL] [Abstract][Full Text] [Related]
29. Effect of acute intraocular pressure elevation on the monkey optic nerve head as detected by spectral domain optical coherence tomography. Strouthidis NG; Fortune B; Yang H; Sigal IA; Burgoyne CF Invest Ophthalmol Vis Sci; 2011 Dec; 52(13):9431-7. PubMed ID: 22058335 [TBL] [Abstract][Full Text] [Related]
30. Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry. Sigal IA; Flanagan JG; Tertinegg I; Ethier CR Biomech Model Mechanobiol; 2009 Apr; 8(2):85-98. PubMed ID: 18309526 [TBL] [Abstract][Full Text] [Related]
31. Effects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa. Coudrillier B; Campbell IC; Read AT; Geraldes DM; Vo NT; Feola A; Mulvihill J; Albon J; Abel RL; Ethier CR Invest Ophthalmol Vis Sci; 2016 May; 57(6):2666-77. PubMed ID: 27183053 [TBL] [Abstract][Full Text] [Related]
32. Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Downs JC; Suh JK; Thomas KA; Bellezza AJ; Hart RT; Burgoyne CF Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):540-6. PubMed ID: 15671280 [TBL] [Abstract][Full Text] [Related]
33. 3D morphometry of the human optic nerve head. Sigal IA; Flanagan JG; Tertinegg I; Ethier CR Exp Eye Res; 2010 Jan; 90(1):70-80. PubMed ID: 19772858 [TBL] [Abstract][Full Text] [Related]
34. Study on establishment and mechanics application of finite element model of bovine eye. Cui YH; Huang JF; Cheng SY; Wei W; Shang L; Li N; Xiong K BMC Ophthalmol; 2015 Aug; 15():101. PubMed ID: 26268321 [TBL] [Abstract][Full Text] [Related]
35. Physiologic intereye differences in monkey optic nerve head architecture and their relation to changes in early experimental glaucoma. Yang H; Downs JC; Burgoyne CF Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):224-34. PubMed ID: 18775866 [TBL] [Abstract][Full Text] [Related]
36. In vivo three-dimensional characterization of the healthy human lamina cribrosa with adaptive optics spectral-domain optical coherence tomography. Nadler Z; Wang B; Schuman JS; Ferguson RD; Patel A; Hammer DX; Bilonick RA; Ishikawa H; Kagemann L; Sigal IA; Wollstein G Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6459-66. PubMed ID: 25228539 [TBL] [Abstract][Full Text] [Related]
37. The connective tissue phenotype of glaucomatous cupping in the monkey eye - Clinical and research implications. Yang H; Reynaud J; Lockwood H; Williams G; Hardin C; Reyes L; Stowell C; Gardiner SK; Burgoyne CF Prog Retin Eye Res; 2017 Jul; 59():1-52. PubMed ID: 28300644 [TBL] [Abstract][Full Text] [Related]
38. Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa. Voorhees AP; Jan NJ; Sigal IA Acta Biomater; 2017 Aug; 58():278-290. PubMed ID: 28528864 [TBL] [Abstract][Full Text] [Related]
39. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Inoue R; Hangai M; Kotera Y; Nakanishi H; Mori S; Morishita S; Yoshimura N Ophthalmology; 2009 Feb; 116(2):214-22. PubMed ID: 19091413 [TBL] [Abstract][Full Text] [Related]
40. Microstructural Crimp of the Lamina Cribrosa and Peripapillary Sclera Collagen Fibers. Jan NJ; Gomez C; Moed S; Voorhees AP; Schuman JS; Bilonick RA; Sigal IA Invest Ophthalmol Vis Sci; 2017 Jul; 58(9):3378-3388. PubMed ID: 28687851 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]