These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19696853)

  • 1. Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters.
    McKee D; Chami M; Brown I; Calzado VS; Doxaran D; Cunningham A
    Appl Opt; 2009 Aug; 48(24):4663-75. PubMed ID: 19696853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters.
    Snyder WA; Arnone RA; Davis CO; Goode W; Gould RW; Ladner S; Lamela G; Rhea WJ; Stavn R; Sydor M; Weidemann A
    Appl Opt; 2008 Feb; 47(5):666-77. PubMed ID: 18268778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral variability of the particulate backscattering ratio.
    Whitmire AL; Boss E; Cowles TJ; Pegau WS
    Opt Express; 2007 May; 15(11):7019-31. PubMed ID: 19547019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability of particulate backscattering ratio and its relations to particle intrinsic features in the Bohai Sea, Yellow Sea, and East China Sea.
    Sun D; Su X; Wang S; Qiu Z; Ling Z; Mao Z; He Y
    Opt Express; 2019 Feb; 27(3):3074-3090. PubMed ID: 30732334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral attenuation and backscattering as indicators of average particle size.
    Slade WH; Boss E
    Appl Opt; 2015 Aug; 54(24):7264-77. PubMed ID: 26368762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new model for the vertical spectral diffuse attenuation coefficient of downwelling irradiance in turbid coastal waters: validation with in situ measurements.
    Simon A; Shanmugam P
    Opt Express; 2013 Dec; 21(24):30082-106. PubMed ID: 24514558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectra of particulate backscattering in natural waters.
    Gordon HR; Lewis MR; McLean SD; Twardowski MS; Freeman SA; Voss KJ; Boynton GC
    Opt Express; 2009 Aug; 17(18):16192-208. PubMed ID: 19724619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light scattering properties and their relation to the biogeochemical composition of turbid productive waters: a case study of Lake Taihu.
    Sun D; Li Y; Wang Q; Gao J; Lv H; Le C; Huang C
    Appl Opt; 2009 Apr; 48(11):1979-89. PubMed ID: 19363534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of inherent optical properties of Lake Ontario coastal waters.
    Bukata RP; Jerome JH; Bruton JE; Jain SC
    Appl Opt; 1979 Dec; 18(23):3926-32. PubMed ID: 20216727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of suspended particulate-size distribution on the backscattering ratio in the remote sensing of seawater.
    Risović D
    Appl Opt; 2002 Nov; 41(33):7092-101. PubMed ID: 12463257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution.
    Morel A; Gentili B
    Appl Opt; 1991 Oct; 30(30):4427-38. PubMed ID: 20717221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forward modeling of inherent optical properties from flow cytometry estimates of particle size and refractive index.
    Agagliate J; Lefering I; McKee D
    Appl Opt; 2018 Mar; 57(8):1777-1788. PubMed ID: 29521959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-examining the effect of particle phase functions on the remote-sensing reflectance.
    Xiong Y; Zhang X; He S; Gray DJ
    Appl Opt; 2017 Aug; 56(24):6881-6888. PubMed ID: 29048028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of suspended particulate matter in contrasting coastal marine environments with angle-resolved polarized light scattering measurements.
    Koestner D; Stramski D; Reynolds RA
    Appl Opt; 2021 Dec; 60(36):11161-11179. PubMed ID: 35201105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters.
    Sydor M; Arnone RA
    Appl Opt; 1997 Sep; 36(27):6905-12. PubMed ID: 18259562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral backscattering properties of marine phytoplankton cultures.
    Whitmire AL; Pegau WS; Karp-Boss L; Boss E; Cowles TJ
    Opt Express; 2010 Jul; 18(14):15073-93. PubMed ID: 20639993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the contribution of phytoplankton phase functions to uncertainties in the water colour signal.
    Lain LR; Bernard S; Matthews MW
    Opt Express; 2017 Feb; 25(4):A151-A165. PubMed ID: 28241532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability of relationship between the volume scattering function at 180° and the backscattering coefficient for aquatic particles.
    Hu L; Zhang X; Xiong Y; Gray DJ; He MX
    Appl Opt; 2020 Apr; 59(10):C31-C41. PubMed ID: 32400563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Backscattering characteristics of Amphidinium carterae Hulburt].
    Jiang LL; Wang L; Zhao DZ; Wang X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jul; 33(7):1892-6. PubMed ID: 24059196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorption and backscattering coefficients and their relations to water constituents of Poyang Lake, China.
    Wu G; Cui L; Duan H; Fei T; Liu Y
    Appl Opt; 2011 Dec; 50(34):6358-68. PubMed ID: 22192987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.