These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19696912)

  • 1. Imaging three-dimensional light propagation through periodic nanohole arrays using scanning aperture microscopy.
    Chowdhury MH; Catchmark JM; Lakowicz JR
    Appl Phys Lett; 2007 Mar; 91(10):nihpa132475. PubMed ID: 19696912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Nanohole Spacing on the Self-Imaging Phenomenon Created by the Three-Dimensional Propagation of Light through Periodic Nanohole Arrays.
    Chowdhury MH; Lindquist NC; Lesuffleur A; Oh SH; Lakowicz JR; Ray K
    J Phys Chem C Nanomater Interfaces; 2012 Sep; 116(37):. PubMed ID: 24416456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-field characterization of extraordinary optical transmission in sub-wavelength aperture arrays.
    Mrejen M; Israel A; Taha H; Palchan M; Lewis A
    Opt Express; 2007 Jul; 15(15):9129-38. PubMed ID: 19547253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films.
    Chang SH; Gray S; Schatz G
    Opt Express; 2005 Apr; 13(8):3150-65. PubMed ID: 19495214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Second-harmonic generation from metal-film nanohole arrays.
    Lu H; Liu X; Zhou R; Gong Y; Mao D
    Appl Opt; 2010 Apr; 49(12):2347-51. PubMed ID: 20411015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interferometric Plasmonic Lensing with Nanohole Arrays.
    Gong Y; Joly AG; El-Khoury PZ; Hess WP
    J Phys Chem Lett; 2014 Dec; 5(24):4243-8. PubMed ID: 26273969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband light absorption enhancement in randomly rotated elliptical nanohole arrays for photovoltaic application.
    Qin X; Wu Y; Zhang Z; Xia Z; Zhou J; Zhu J
    Appl Opt; 2019 Feb; 58(4):1152-1157. PubMed ID: 30874166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput nanohole array based system to monitor multiple binding events in real time.
    Ji J; O'Connell JG; Carter DJ; Larson DN
    Anal Chem; 2008 Apr; 80(7):2491-8. PubMed ID: 18307360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel 3D Au nanohole arrays with outstanding optical properties.
    Ai B; Yu Y; Möhwald H; Zhang G
    Nanotechnology; 2013 Jan; 24(3):035303. PubMed ID: 23263405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon resonance sensing properties of a 3D nanostructure consisting of aligned nanohole and nanocone arrays.
    Najiminaini M; Ertorer E; Kaminska B; Mittler S; Carson JJ
    Analyst; 2014 Apr; 139(8):1876-82. PubMed ID: 24527489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superlocalized Three-Dimensional Live Imaging of Mitochondrial Dynamics in Neurons Using Plasmonic Nanohole Arrays.
    Son T; Lee D; Lee C; Moon G; Ha GE; Lee H; Kwak H; Cheong E; Kim D
    ACS Nano; 2019 Mar; 13(3):3063-3074. PubMed ID: 30802028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
    Sahu SP; Mahigir A; Chidester B; Veronis G; Gartia MR
    Nano Lett; 2019 Sep; 19(9):6192-6202. PubMed ID: 31387355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-range ordered 2D nanoholes: lattice-model and novel insight into the impact of coordination geometry and packing on their propagating-mode transmittance features.
    Cesaria M; Taurino A; Manera MG; Rella R
    Nanoscale Adv; 2020 Sep; 2(9):4133-4146. PubMed ID: 36132775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wafer-scale periodic nanohole arrays templated from two-dimensional nonclose-packed colloidal crystals.
    Jiang P; McFarland MJ
    J Am Chem Soc; 2005 Mar; 127(11):3710-1. PubMed ID: 15771501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced fluorescence from arrays of nanoholes in a gold film.
    Brolo AG; Kwok SC; Moffitt MG; Gordon R; Riordon J; Kavanagh KL
    J Am Chem Soc; 2005 Oct; 127(42):14936-41. PubMed ID: 16231950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridged-bowtie and cross bridged-bowtie nanohole arrays as SERS substrates with hotspot tunability and multi-wavelength SERS response.
    Gupta N; Dhawan A
    Opt Express; 2018 Jul; 26(14):17899-17915. PubMed ID: 30114073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmissive Nanohole Arrays for Massively-Parallel Optical Biosensing.
    Wang Y; Kar A; Paterson A; Kourentzi K; Le H; Ruchhoeft P; Willson R; Bao J
    ACS Photonics; 2014 Mar; 1(3):241-245. PubMed ID: 25530982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional mapping of the light intensity transmitted through nanoapertures.
    Amarie D; Rawlinson ND; Schaich WL; Dragnea B; Jacobson SC
    Nano Lett; 2005 Jul; 5(7):1227-30. PubMed ID: 16178215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertically oriented, three-dimensionally tapered deep-subwavelength metallic nanohole arrays developed by photofluidization lithography.
    Lee SA; Kang HS; Park JK; Lee S
    Adv Mater; 2014 Nov; 26(44):7521-8. PubMed ID: 25250689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation.
    Lindquist NC; Lesuffleur A; Im H; Oh SH
    Lab Chip; 2009 Feb; 9(3):382-7. PubMed ID: 19156286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.