These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 19697043)

  • 1. Olfactory perireceptor and receptor events in moths: a kinetic model revised.
    Kaissling KE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Oct; 195(10):895-922. PubMed ID: 19697043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of olfactory responses might largely depend on the odorant-receptor interaction and the odorant deactivation postulated for flux detectors.
    Kaissling KE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Nov; 199(11):879-96. PubMed ID: 23563709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Olfactory perireceptor and receptor events in moths: a kinetic model.
    Kaissling KE
    Chem Senses; 2001 Feb; 26(2):125-50. PubMed ID: 11238244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The multiple role of the pheromone-binding protein in olfactory transduction.
    Ziegelberger G
    Ciba Found Symp; 1996; 200():267-75; discussion 275-80. PubMed ID: 8894303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular transduction events under pulsed stimulation in moth olfactory sensilla.
    Rospars JP; Lánský P; Krivan V
    Chem Senses; 2003 Jul; 28(6):509-22. PubMed ID: 12907588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pheromone discrimination by a pH-tuned polymorphism of the Bombyx mori pheromone-binding protein.
    Damberger FF; Michel E; Ishida Y; Leal WS; Wüthrich K
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18680-5. PubMed ID: 24158483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative model of odor deactivation based on the redox shift of the pheromone-binding protein im moth antennae.
    Kaissling KE
    Ann N Y Acad Sci; 1998 Nov; 855():320-2. PubMed ID: 10049225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and molecular properties of pheromone binding and release.
    Leal WS; Chen AM; Ishida Y; Chiang VP; Erickson ML; Morgan TI; Tsuruda JM
    Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5386-91. PubMed ID: 15784736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-interaction kinetics of the pheromone- binding protein from the gypsy moth, L. dispar: insights into the mechanism of binding and release.
    Gong Y; Pace TC; Castillo C; Bohne C; O'Neill MA; Plettner E
    Chem Biol; 2009 Feb; 16(2):162-72. PubMed ID: 19246007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of the general odorant binding protein of Bombyx mori BmorGOBP2 to the moth sex pheromone components.
    He X; Tzotzos G; Woodcock C; Pickett JA; Hooper T; Field LM; Zhou JJ
    J Chem Ecol; 2010 Dec; 36(12):1293-305. PubMed ID: 20981477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunolocalization of odorant-binding proteins in noctuid moths (Insecta, Lepidoptera).
    Zhang S; Maida R; Steinbrecht RA
    Chem Senses; 2001 Sep; 26(7):885-96. PubMed ID: 11555483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pheromone reception in moths: from molecules to behaviors.
    Zhang J; Walker WB; Wang G
    Prog Mol Biol Transl Sci; 2015; 130():109-28. PubMed ID: 25623339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous fatty acids in olfactory hairs influence pheromone binding protein structure and function in Lymantria dispar.
    Nardella J; Terrado M; Honson NS; Plettner E
    Arch Biochem Biophys; 2015 Aug; 579():73-84. PubMed ID: 26032337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural consequences of the pH-induced conformational switch in A.polyphemus pheromone-binding protein: mechanisms of ligand release.
    Zubkov S; Gronenborn AM; Byeon IJ; Mohanty S
    J Mol Biol; 2005 Dec; 354(5):1081-90. PubMed ID: 16289114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispar.
    Plettner E; Lazar J; Prestwich EG; Prestwich GD
    Biochemistry; 2000 Aug; 39(30):8953-62. PubMed ID: 10913308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of Epiphyas postvittana pheromone binding protein 3.
    Hamiaux C; Carraher C; Löfstedt C; Corcoran JA
    Sci Rep; 2020 Oct; 10(1):16366. PubMed ID: 33004932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo functional characterisation of pheromone binding protein-1 in the silkmoth, Bombyx mori.
    Shiota Y; Sakurai T; Daimon T; Mitsuno H; Fujii T; Matsuyama S; Sezutsu H; Ishikawa Y; Kanzaki R
    Sci Rep; 2018 Sep; 8(1):13529. PubMed ID: 30202026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pheromone Perception: Mechanism of the Reversible Coil-Helix Transition in
    Mazumder S; Chaudhary BP; Dahal SR; Al-Danoon O; Mohanty S
    Biochemistry; 2019 Nov; 58(45):4530-4542. PubMed ID: 31637906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three pheromone-binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea pernyi.
    Maida R; Krieger J; Gebauer T; Lange U; Ziegelberger G
    Eur J Biochem; 2000 May; 267(10):2899-908. PubMed ID: 10806387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peripheral mechanisms of pheromone reception in moths.
    Kaissling KE
    Chem Senses; 1996 Apr; 21(2):257-68. PubMed ID: 8670704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.