BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 19697915)

  • 1. Ligand-substitution mode capillary electrophoretic reactor: extending capillary electrophoretic reactor toward measurement of slow dissociation kinetics with a half-life of hours.
    Iki N; Takahashi M; Takahashi T; Hoshino H
    Anal Chem; 2009 Sep; 81(18):7849-54. PubMed ID: 19697915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plug-plug kinetic capillary electrophoresis: method for direct determination of rate constants of complex formation and dissociation.
    Okhonin V; Petrov AP; Berezovski M; Krylov SN
    Anal Chem; 2006 Jul; 78(14):4803-10. PubMed ID: 16841898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microchip capillary electrophoretic reactor: a new methodology for direct measurement of dissociation kinetics of metal complexes.
    Takahashi T; Ohtsuka K; Iki N; Hoshino H
    Analyst; 2005 Oct; 130(10):1337-9. PubMed ID: 16172654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A capillary electrophoretic reactor with an electroosmosis control method for measurement of dissociation kinetics of metal complexes.
    Iki N; Hoshino H; Yotsuyanagi T
    Anal Chem; 2000 Oct; 72(20):4812-20. PubMed ID: 11055694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of protein-ligand affinity constants from direct migration time in capillary electrophoresis.
    Nilsson M; Harang V; Bergström M; Ohlson S; Isaksson R; Johansson G
    Electrophoresis; 2004 Jun; 25(12):1829-36. PubMed ID: 15213981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding the scope of CE reactor to ssDNA-binding protein-ssDNA complexes as exemplified for a tool for direct measurement of dissociation kinetics of biomolecular complexes.
    Takahashi T; Ohtsuka KI; Tomiya Y; Iki N; Hoshino H
    Electrophoresis; 2009 Sep; 30(17):3079-3085. PubMed ID: 19681050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary electrophoretic reactor for estimation of spontaneous dissociation rate of Trypsin-Aprotinin complex.
    Sasaki Y; Sato Y; Takahashi T; Umetsu M; Iki N
    Anal Biochem; 2019 Nov; 585():113406. PubMed ID: 31445899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductions by titanium(II) as catalyzed by titanium(IV).
    Mukherjee R; Yang Z; Gould ES
    Dalton Trans; 2006 Feb; (6):772-4. PubMed ID: 16437171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sweeping capillary electrophoresis: a non-stopped-flow method for measuring bimolecular rate constant of complex formation between protein and DNA.
    Okhonin V; Berezovski M; Krylov SN
    J Am Chem Soc; 2004 Jun; 126(23):7166-7. PubMed ID: 15186140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing equilibrium and rate constants of weak and fast noncovalent interactions.
    Mironov GG; Okhonin V; Gorelsky SI; Berezovski MV
    Anal Chem; 2011 Mar; 83(6):2364-70. PubMed ID: 21348489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic unfolding of a regulatory subunit of cAMP-dependent protein kinase by capillary electrophoresis: Impact of cAMP dissociation on protein stability.
    Gavina JM; Das R; Britz-McKibbin P
    Electrophoresis; 2006 Nov; 27(21):4196-204. PubMed ID: 17024688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of dissociation constants by competitive binding in partial filling capillary electrophoresis.
    Nilsson M; Johansson G; Isaksson R
    Electrophoresis; 2004 Apr; 25(7-8):1022-7. PubMed ID: 15095443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal complexes stability constant determination by hyphenation of capillary electrophoresis with inductively coupled plasma mass spectrometry: the case of 1:1 metal-to-ligand stoichiometry.
    Petit J; Geertsen V; Beaucaire C; Stambouli M
    J Chromatogr A; 2009 May; 1216(18):4113-20. PubMed ID: 19303078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity capillary electrophoretic DNA separation using PEG-oligodeoxyribonucleotide block copolymers: relationship between peak resolution and affinity strength.
    Kanayama N; Takarada T; Kimura A; Shibata H; Maeda M
    J Sep Sci; 2008 Mar; 31(5):837-44. PubMed ID: 18300210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of chemometric methodology in ACE: predictive investigation of protein-ligand binding.
    Hanrahan G; Montes RE; Pao A; Johnson A; Gomez FA
    Electrophoresis; 2007 Aug; 28(16):2853-60. PubMed ID: 17640087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple capillary electrophoresis with electrochemical detection method for determination of the hydrolysis rate constant of chlorogenic acid.
    Tong P; Zhang L; He Y; Chi Y; Chen G
    Talanta; 2009 Mar; 77(5):1790-4. PubMed ID: 19159800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Affinity capillary electrophoresis to examine receptor-ligand interactions.
    Azad M; Kaddis J; Villareal V; Hernandez L; Silverio C; Gomez FA
    Methods Mol Biol; 2004; 276():153-68. PubMed ID: 15163857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic simulation of reactive separations in capillary electrophoresis.
    Newman CI; McGuffin VL
    Electrophoresis; 2005 Feb; 26(3):537-47. PubMed ID: 15690455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of voltage gradient partial-filling affinity capillary electrophoresis to estimate binding constants of ligands to receptors.
    Ramirez A; Gomez FA
    J Capill Electrophor Microchip Technol; 2007; 10(3-4):43-50. PubMed ID: 18232512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation kinetic analysis of Ce(III) complex with Quin2 by microchip capillary electrophoretic reactor.
    Ohtsuka K; Iki N; Hoshino H; Takahashi T
    Anal Sci; 2013; 29(5):553-7. PubMed ID: 23665629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.