These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
544 related articles for article (PubMed ID: 19699031)
1. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Wang J; Bai J; Xu J; Liang B J Hazard Mater; 2009 Dec; 172(2-3):1100-5. PubMed ID: 19699031 [TBL] [Abstract][Full Text] [Related]
2. Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect. Yang Y; Chen S; Li S; Chen M; Chen H; Liu B J Biotechnol; 2014 Mar; 173():24-30. PubMed ID: 24445171 [TBL] [Abstract][Full Text] [Related]
3. Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Hocheng H; Su C; Jadhav UU Chemosphere; 2014 Dec; 117():652-7. PubMed ID: 25461931 [TBL] [Abstract][Full Text] [Related]
4. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans. Kumar RN; Nagendran R Chemosphere; 2007 Jan; 66(9):1775-81. PubMed ID: 16979697 [TBL] [Abstract][Full Text] [Related]
5. Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). Liang G; Tang J; Liu W; Zhou Q J Hazard Mater; 2013 Apr; 250-251():238-45. PubMed ID: 23454463 [TBL] [Abstract][Full Text] [Related]
6. Bioleaching of zinc and iron from steel plant waste using Acidithiobacillus ferrooxidans. Bayat O; Sever E; Bayat B; Arslan V; Poole C Appl Biochem Biotechnol; 2009 Jan; 152(1):117-26. PubMed ID: 18581266 [TBL] [Abstract][Full Text] [Related]
7. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans. Wang YS; Pan ZY; Lang JM; Xu JM; Zheng YG J Hazard Mater; 2007 Aug; 147(1-2):319-24. PubMed ID: 17275185 [TBL] [Abstract][Full Text] [Related]
8. Optimization of kinetics and operating parameters for the bioleaching of heavy metals from sewage sludge, using co-inoculation of two Acidithiobacillus species. Li H; Ye M; Zheng L; Xu Y; Sun S; Du Q; Zhong Y; Ye S; Zhang D Water Sci Technol; 2018 May; 2017(2):390-403. PubMed ID: 29851391 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of Acidithiobacillus ferrooxidans on Cotton Gauze for the Bioleaching of Waste Printed Circuit Boards. Nie H; Zhu N; Cao Y; Xu Z; Wu P Appl Biochem Biotechnol; 2015 Oct; 177(3):675-88. PubMed ID: 26239442 [TBL] [Abstract][Full Text] [Related]
10. The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil. Ko MS; Park HS; Kim KW; Lee JU Environ Geochem Health; 2013 Dec; 35(6):727-33. PubMed ID: 23709230 [TBL] [Abstract][Full Text] [Related]
11. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans. Naresh Kumar R; Nagendran R J Hazard Mater; 2009 Sep; 169(1-3):1119-26. PubMed ID: 19464109 [TBL] [Abstract][Full Text] [Related]
12. Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite. Zhu J; Li Q; Jiao W; Jiang H; Sand W; Xia J; Liu X; Qin W; Qiu G; Hu Y; Chai L Colloids Surf B Biointerfaces; 2012 Jun; 94():95-100. PubMed ID: 22341516 [TBL] [Abstract][Full Text] [Related]
13. Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species. Wang S; Zheng G; Zhou L Water Res; 2010 Oct; 44(18):5423-31. PubMed ID: 20633920 [TBL] [Abstract][Full Text] [Related]
14. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans. NareshKumar R; Nagendran R J Hazard Mater; 2008 Aug; 156(1-3):102-7. PubMed ID: 18206305 [TBL] [Abstract][Full Text] [Related]
15. The bioleaching potential of a bacterial consortium. Latorre M; Cortés MP; Travisany D; Di Genova A; Budinich M; Reyes-Jara A; Hödar C; González M; Parada P; Bobadilla-Fazzini RA; Cambiazo V; Maass A Bioresour Technol; 2016 Oct; 218():659-66. PubMed ID: 27416516 [TBL] [Abstract][Full Text] [Related]
16. Detection of Acidithiobacillus ferrooxidans in acid mine drainage environments using fluorescent in situ hybridization (FISH). Mahmoud KK; Leduc LG; Ferroni GD J Microbiol Methods; 2005 Apr; 61(1):33-45. PubMed ID: 15676194 [TBL] [Abstract][Full Text] [Related]
17. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources. Chen P; Yan L; Leng F; Nan W; Yue X; Zheng Y; Feng N; Li H Bioresour Technol; 2011 Feb; 102(3):3260-7. PubMed ID: 21146407 [TBL] [Abstract][Full Text] [Related]
18. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical effect on bioleaching of arsenic and manganese from tungsten mine wastes using Acidithiobacillus spp. Nguyen VK; Ha MG; Shin S; Seo M; Jang J; Jo S; Kim D; Lee S; Jung Y; Kang P; Shin C; Ahn Y J Environ Manage; 2018 Oct; 223():852-859. PubMed ID: 29986334 [TBL] [Abstract][Full Text] [Related]
20. Comparative study of simultaneous removal of As, Cu, and Pb using different combinations of electrokinetics with bioleaching by Acidithiobacillus ferrooxidans. Kim HA; Lee KY; Lee BT; Kim SO; Kim KW Water Res; 2012 Nov; 46(17):5591-5599. PubMed ID: 22921395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]