These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 19699135)

  • 1. Evaluation of a bioceramic-based nanocomposite material for controlled delivery of a non-steroidal anti-inflammatory drug.
    Hesaraki S; Moztarzadeh F; Nezafati N
    Med Eng Phys; 2009 Dec; 31(10):1205-13. PubMed ID: 19699135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron oxide nanoparticles significantly enhances the injectability of apatitic bone cement for vertebroplasty.
    Vlad MD; del Valle LJ; Barracó M; Torres R; López J; Fernández E
    Spine (Phila Pa 1976); 2008 Oct; 33(21):2290-8. PubMed ID: 18827693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-strength resorbable brushite bone cement with controlled drug-releasing capabilities.
    Hofmann MP; Mohammed AR; Perrie Y; Gbureck U; Barralet JE
    Acta Biomater; 2009 Jan; 5(1):43-9. PubMed ID: 18799378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro bioactivity and biocompatibility of dicalcium silicate cements for endodontic use.
    Chen CC; Ho CC; David Chen CH; Wang WC; Ding SJ
    J Endod; 2009 Nov; 35(11):1554-7. PubMed ID: 19840646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of calcium sulfate-biomimetic apatite nanocomposites for controlled release of antibiotics.
    Hesaraki S; Moztarzadeh F; Nemati R; Nezafati N
    J Biomed Mater Res B Appl Biomater; 2009 Nov; 91(2):651-661. PubMed ID: 19582854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Physical properties of apatite bone cement].
    Chen D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Mar; 17(1):13-5, 18. PubMed ID: 10879182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles.
    Shi Z; Neoh KG; Kang ET; Wang W
    Biomaterials; 2006 Apr; 27(11):2440-9. PubMed ID: 16338001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of calcium aluminate cement for hard tissue repair: effects of lithium fluoride and maleic acid on setting behavior, compressive strength, and biocompatibility.
    Oh SH; Choi SY; Lee YK; Kim KN
    J Biomed Mater Res; 2002 Dec; 62(4):593-9. PubMed ID: 12221708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibiotic delivery system using nano-hydroxyapatite/chitosan bone cement consisting of berberine.
    Zou Q; Li Y; Zhang L; Zuo Y; Li J; Li J
    J Biomed Mater Res A; 2009 Jun; 89(4):1108-17. PubMed ID: 18767062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride.
    Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K
    J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The constitution, physical properties and biocompatibility of modified accelerated cement.
    Camilleri J; Montesin FE; Juszczyk AS; Papaioannou S; Curtis RV; Donald FM; Ford TR
    Dent Mater; 2008 Mar; 24(3):341-50. PubMed ID: 17659330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel skeletal drug delivery system using self-setting bioactive glass bone cement. IV: Cephalexin release from cement containing polymer-coated bulk powder.
    Otsuka M; Matsuda Y; Kokubo T; Yoshihara S; Nakamura T; Yamamuro T
    Biomed Mater Eng; 1993; 3(4):229-36. PubMed ID: 8205064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gentamicin release from two-solution and powder-liquid poly(methyl methacrylate)-based bone cements by using novel pH method.
    Merkhan IK; Hasenwinkel JM; Gilbert JL
    J Biomed Mater Res A; 2004 Jun; 69(3):577-83. PubMed ID: 15127405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Portland cement for use as a dental restorative material.
    Camilleri J; Montesin FE; Curtis RV; Ford TR
    Dent Mater; 2006 Jun; 22(6):569-75. PubMed ID: 16221489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections.
    Rauschmann MA; Wichelhaus TA; Stirnal V; Dingeldein E; Zichner L; Schnettler R; Alt V
    Biomaterials; 2005 May; 26(15):2677-84. PubMed ID: 15585271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The in vitro and in vivo indomethacin release from self-setting bioactive glass bone cement.
    Otsuka M; Nakahigashi Y; Matsuda Y; Kokubo T; Yoshihara S; Fujita H; Nakamura T
    Biomed Mater Eng; 1997; 7(5):291-302. PubMed ID: 9457380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [In vitro release of tetracycline hydrochloride from alpha-TCP cement].
    Song Z; Zhou D; Yin G; Zheng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Dec; 20(4):586-9. PubMed ID: 14716851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.
    Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C
    Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indomethacin-loaded polymeric nanocarriers based on amphiphilic polyphosphazenes with poly (N-isopropylacrylamide) and ethyl tryptophan as side groups: Preparation, in vitro and in vivo evaluation.
    Zhang JX; Li XJ; Qiu LY; Li XH; Yan MQ; Yi Jin ; Zhu KJ
    J Control Release; 2006 Dec; 116(3):322-9. PubMed ID: 17109985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.