BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

686 related articles for article (PubMed ID: 19699210)

  • 1. Ligand-induced conformational rearrangements promote interaction between the Escherichia coli enterobactin biosynthetic proteins EntE and EntB.
    Khalil S; Pawelek PD
    J Mol Biol; 2009 Oct; 393(3):658-71. PubMed ID: 19699210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic adenylation of 2,3-dihydroxybenzoate is enhanced by a protein-protein interaction between Escherichia coli 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase (EntA) and 2,3-dihydroxybenzoate-AMP ligase (EntE).
    Khalil S; Pawelek PD
    Biochemistry; 2011 Feb; 50(4):533-45. PubMed ID: 21166461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate.
    Gehring AM; Bradley KA; Walsh CT
    Biochemistry; 1997 Jul; 36(28):8495-503. PubMed ID: 9214294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and inhibition studies of dihydroxybenzoate-AMP ligase from Escherichia coli.
    Sikora AL; Wilson DJ; Aldrich CC; Blanchard JS
    Biochemistry; 2010 May; 49(17):3648-57. PubMed ID: 20359185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular co-localization of the Escherichia coli enterobactin biosynthetic enzymes EntA, EntB, and EntE.
    Pakarian P; Pawelek PD
    Biochem Biophys Res Commun; 2016 Sep; 478(1):25-32. PubMed ID: 27470582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF.
    Gehring AM; Mori I; Walsh CT
    Biochemistry; 1998 Feb; 37(8):2648-59. PubMed ID: 9485415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain.
    Drake EJ; Nicolai DA; Gulick AM
    Chem Biol; 2006 Apr; 13(4):409-19. PubMed ID: 16632253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a surface glutamine residue (Q64) of Escherichia coli EntA required for interaction with EntE.
    Khalil S; Jaworski I; Pawelek PD
    Biochem Biophys Res Commun; 2014 Oct; 453(3):625-30. PubMed ID: 25301558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subunit orientation in the Escherichia coli enterobactin biosynthetic EntA-EntE complex revealed by a two-hybrid approach.
    Pakarian P; Pawelek PD
    Biochimie; 2016 Aug; 127():1-9. PubMed ID: 27086082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enterobactin synthetase-catalyzed formation of P(1),P(3)-diadenosine-5'-tetraphosphate.
    Sikora AL; Cahill SM; Blanchard JS
    Biochemistry; 2009 Nov; 48(46):10827-9. PubMed ID: 19852513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hotdog thioesterase EntH (YbdB) plays a role in vivo in optimal enterobactin biosynthesis by interacting with the ArCP domain of EntB.
    Leduc D; Battesti A; Bouveret E
    J Bacteriol; 2007 Oct; 189(19):7112-26. PubMed ID: 17675380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization.
    Shaw-Reid CA; Kelleher NL; Losey HC; Gehring AM; Berg C; Walsh CT
    Chem Biol; 1999 Jun; 6(6):385-400. PubMed ID: 10375542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential hydrolysis of aberrant intermediates by the type II thioesterase in Escherichia coli nonribosomal enterobactin synthesis: substrate specificities and mutagenic studies on the active-site residues.
    Guo ZF; Sun Y; Zheng S; Guo Z
    Biochemistry; 2009 Mar; 48(8):1712-22. PubMed ID: 19193103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of an intracellular interaction between the Escherichia coli enzymes EntC and EntB and identification of a potential electrostatic channeling surface.
    Ouellette S; Pakarian P; Bin X; Pawelek PD
    Biochimie; 2022 Nov; 202():159-165. PubMed ID: 35952947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli.
    Miethke M; Hou J; Marahiel MA
    Biochemistry; 2011 Dec; 50(50):10951-64. PubMed ID: 22098718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomolar inhibition of the enterobactin biosynthesis enzyme, EntE: synthesis, substituent effects, and additivity.
    Callahan BP; Lomino JV; Wolfenden R
    Bioorg Med Chem Lett; 2006 Jul; 16(14):3802-5. PubMed ID: 16678412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane association of the Escherichia coli enterobactin synthase proteins EntB/G, EntE, and EntF.
    Hantash FM; Earhart CF
    J Bacteriol; 2000 Mar; 182(6):1768-73. PubMed ID: 10692387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of basic amino acid residues important for citrate binding by the periplasmic receptor domain of the sensor kinase CitA.
    Gerharz T; Reinelt S; Kaspar S; Scapozza L; Bott M
    Biochemistry; 2003 May; 42(19):5917-24. PubMed ID: 12741850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the crystal structure of EntA, a 2,3-dihydro-2,3-dihydroxybenzoic acid dehydrogenase from Escherichia coli.
    Sundlov JA; Garringer JA; Carney JM; Reger AS; Drake EJ; Duax WL; Gulick AM
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):734-40. PubMed ID: 16790929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural change of the enterobactin synthetase in crowded solution and its relation to crowding-enhanced product specificity in nonribosomal enterobactin biosynthesis.
    Guo ZF; Jiang M; Zheng S; Guo Z
    Bioorg Med Chem Lett; 2010 Jul; 20(13):3855-8. PubMed ID: 20627563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.