BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19699322)

  • 1. Novel optical nanosensors for probing and imaging live cells.
    Kneipp J; Kneipp H; Wittig B; Kneipp K
    Nanomedicine; 2010 Apr; 6(2):214-26. PubMed ID: 19699322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems.
    Matschulat A; Drescher D; Kneipp J
    ACS Nano; 2010 Jun; 4(6):3259-69. PubMed ID: 20503969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates.
    Kneipp J; Kneipp H; McLaughlin M; Brown D; Kneipp K
    Nano Lett; 2006 Oct; 6(10):2225-31. PubMed ID: 17034088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One- and two-photon excited optical ph probing for cells using surface-enhanced Raman and hyper-Raman nanosensors.
    Kneipp J; Kneipp H; Wittig B; Kneipp K
    Nano Lett; 2007 Sep; 7(9):2819-23. PubMed ID: 17696561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications.
    Vo-Dinh T; Liu Y; Fales AM; Ngo H; Wang HN; Register JK; Yuan H; Norton SJ; Griffin GD
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(1):17-33. PubMed ID: 25316579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular and Cellular Detection by SERS-Active Plasmonic Nanostructures.
    Wu D; Chen Y; Hou S; Fang W; Duan H
    Chembiochem; 2019 Oct; 20(19):2432-2441. PubMed ID: 30957950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular SERS hybrid probes using BSA-reporter conjugates.
    Hornemann A; Drescher D; Flemig S; Kneipp J
    Anal Bioanal Chem; 2013 Jul; 405(19):6209-22. PubMed ID: 23715676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrogating Cells, Tissues, and Live Animals with New Generations of Surface-Enhanced Raman Scattering Probes and Labels.
    Kneipp J
    ACS Nano; 2017 Feb; 11(2):1136-1141. PubMed ID: 28177599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer.
    Zhao L; Kim TH; Kim HW; Ahn JC; Kim SY
    Acta Biomater; 2015 Jul; 20():155-164. PubMed ID: 25848726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver-coated dye-embedded silica beads: a core material of dual tagging sensors based on fluorescence and Raman scattering.
    Kim K; Lee HB; Choi JY; Shin KS
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):324-30. PubMed ID: 21190360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells.
    Kneipp K; Kneipp H; Kneipp J
    Acc Chem Res; 2006 Jul; 39(7):443-50. PubMed ID: 16846208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.
    Li J; Zhu Z; Zhu B; Ma Y; Lin B; Liu R; Song Y; Lin H; Tu S; Yang C
    Anal Chem; 2016 Aug; 88(15):7828-36. PubMed ID: 27385563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence
studies on live endothelial cells.
    Jaworska A; Wojcik T; Malek K; Kwolek U; Kepczynski M; Ansary AA; Chlopicki S; Baranska M
    Mikrochim Acta; 2015; 182(1):119-127. PubMed ID: 25568498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of MCF-7 tumor cells from leukocytes and fibroblast cells using epithelial cell adhesion molecule targeted multicore surface-enhanced Raman spectroscopy labels.
    Freitag I; Matthäus C; Csaki A; Clement JH; Cialla-May D; Weber K; Krafft C; Popp J
    J Biomed Opt; 2015 May; 20(5):55002. PubMed ID: 25938206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SERS signals at the anti Stokes side of the excitation laser in extremely high local optical fields of silver and gold nanoclusters.
    Kneipp K; Kneipp H
    Faraday Discuss; 2006; 132():27-33; discussion 85-94. PubMed ID: 16833105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.
    Shen Y; Liang L; Zhang S; Huang D; Zhang J; Xu S; Liang C; Xu W
    Nanoscale; 2018 Jan; 10(4):1622-1630. PubMed ID: 29239454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags.
    Chen M; Zhang L; Yang B; Gao M; Zhang X
    Anal Bioanal Chem; 2018 Mar; 410(8):2203-2210. PubMed ID: 29396584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis.
    Vo-Dinh T; Yan F; Stokes DL
    Methods Mol Biol; 2005; 300():255-83. PubMed ID: 15657488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering.
    Kneipp J; Kneipp H; Kneipp K
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17149-53. PubMed ID: 17088534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Branched Au Nanoparticles on Nanofibers for Surface-Enhanced Raman Scattering Sensing of Intracellular pH and Extracellular pH Gradients.
    Zhao X; Campbell S; Wallace GQ; Claing A; Bazuin CG; Masson JF
    ACS Sens; 2020 Jul; 5(7):2155-2167. PubMed ID: 32515184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.