These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 19699710)
61. Biosensors for the Detection of Wang DB; Cui MM; Li M; Zhang XE Acc Chem Res; 2021 Dec; 54(24):4451-4461. PubMed ID: 34846836 [No Abstract] [Full Text] [Related]
62. New immunoassay platform utilizing yeast surface display and direct cell counting. Guo Y; Cheng D; Lee TY; Wang J; Hsing IM Anal Chem; 2010 Dec; 82(23):9601-5. PubMed ID: 21067137 [TBL] [Abstract][Full Text] [Related]
63. Discovery of a Phage Peptide Specifically Binding to the SARS-CoV-2 Spike S1 Protein for the Sensitive Phage-Based Enzyme-Linked Chemiluminescence Immunoassay of the SARS-CoV-2 Antigen. Liu J; Ma P; Yu H; Wang M; Yin P; Pang S; Jiao Y; Dong T; Liu A Anal Chem; 2022 Aug; 94(33):11591-11599. PubMed ID: 35948070 [TBL] [Abstract][Full Text] [Related]
64. Intensified biochip system using chemiluminescence for the detection of Bacillus globigii spores. Stratis-Cullum DN; Griffin GD; Mobley J; Vo-Dinh T Anal Bioanal Chem; 2008 Jul; 391(5):1655-60. PubMed ID: 18224472 [TBL] [Abstract][Full Text] [Related]
65. A High-Throughput Single-Clone Phage Fluorescence Microwell Immunoassay and Laser-Driven Clonal Retrieval System. Chang S; Kim S; Han J; Ha S; Lee H; Song SW; Lee D; Kwon S; Chung J; Kim J Biomolecules; 2020 Mar; 10(4):. PubMed ID: 32235304 [TBL] [Abstract][Full Text] [Related]
66. Electrochemical, optical and mass-based immunosensors: A comprehensive review of Bacillus anthracis detection methods. Tyśkiewicz R; Fedorowicz M; Nakonieczna A; Zielińska P; Kwiatek M; Mizak L Anal Biochem; 2023 Aug; 675():115215. PubMed ID: 37343693 [TBL] [Abstract][Full Text] [Related]
67. Development of a phage chemiluminescent enzyme immunoassay with high sensitivity for the determination of imidaclothiz in agricultural and environmental samples. Ding Y; Hua X; Sun N; Yang J; Deng J; Shi H; Wang M Sci Total Environ; 2017 Dec; 609():854-860. PubMed ID: 28783899 [TBL] [Abstract][Full Text] [Related]
68. Sortase-Mediated Phage Decoration for Analytical Applications. Ding Y; Chen H; Li J; Huang L; Song G; Li Z; Hua X; Gonzalez-Sapienza G; Hammock BD; Wang M Anal Chem; 2021 Aug; 93(34):11800-11808. PubMed ID: 34415158 [TBL] [Abstract][Full Text] [Related]
69. Sensitive detection of spores using volume-amplified magnetic nanobeads. Gómez de la Torre TZ; Ke R; Mezger A; Svedlindh P; Strømme M; Nilsson M Small; 2012 Jul; 8(14):2174-7. PubMed ID: 22514097 [No Abstract] [Full Text] [Related]
70. Phage anti-immune complex assay: general strategy for noncompetitive immunodetection of small molecules. González-Techera A; Vanrell L; Last JA; Hammock BD; González-Sapienza G Anal Chem; 2007 Oct; 79(20):7799-806. PubMed ID: 17845007 [TBL] [Abstract][Full Text] [Related]
71. Development of competitive and noncompetitive lateral flow immunoassays for pendimethalin using synthetic peptides. Huang L; Wang G; Wu Y; Wang Z; Ding Y; Liang H; Hua X Mikrochim Acta; 2023 Dec; 191(1):68. PubMed ID: 38159155 [TBL] [Abstract][Full Text] [Related]
72. Generation of bioluminescent enzyme immunoassay for ferritin by single-chain variable fragment and its NanoLuc luciferase fusion. He Q; Yang L; Lin M; Yang H; Cui X; McCoy MR; Hammock BD; Fang Y; Zhao S Anal Bioanal Chem; 2022 Sep; 414(23):6939-6946. PubMed ID: 35945290 [TBL] [Abstract][Full Text] [Related]
73. Phage vs. Phage: Direct Selections of Sandwich Binding Pairs. Sanders EC; Santos AM; Nguyen EK; Gelston AA; Majumdar S; Weiss GA Viruses; 2023 Mar; 15(3):. PubMed ID: 36992515 [TBL] [Abstract][Full Text] [Related]
74. Harnessing protein sensing ability of electrochemical biosensors via a controlled peptide receptor-electrode interface. Kim JH; Shin JH; Park B; Cho CH; Huh YS; Choi CH; Park JP J Nanobiotechnology; 2023 Mar; 21(1):100. PubMed ID: 36944950 [TBL] [Abstract][Full Text] [Related]
75. Development of a heterologous enzyme-linked immunosorbent assay for organophosphorus pesticides with phage-borne peptide. Hua X; Liu X; Shi H; Wang Y; Kim HJ; Gee SJ; Wang M; Liu F; Hammock BD RSC Adv; 2014 Jan; 4(80):42445-42453. PubMed ID: 26290688 [TBL] [Abstract][Full Text] [Related]
76. Highly Stable Lyophilized Homogeneous Bead-Based Immunoassays for On-Site Detection of Bio Warfare Agents from Complex Matrices. Mechaly A; Marx S; Levy O; Yitzhaki S; Fisher M Anal Chem; 2016 Jun; 88(12):6283-91. PubMed ID: 27253489 [TBL] [Abstract][Full Text] [Related]
77. Immunoassays for Field Screening of Bacillus anthracis and Ricin. Joob B; Wiwanitkit V Health Secur; 2017; 15(2):221-222. PubMed ID: 28418740 [No Abstract] [Full Text] [Related]
78. Response to Letter on Immunoassays for Field Screening of Bacillus anthracis and Ricin. Ozanich RM; Bartholomew RA; Bruckner-Lea CJ Health Secur; 2017; 15(2):222. PubMed ID: 28426247 [No Abstract] [Full Text] [Related]
79. Landscape Phage as a Molecular Recognition Interface for Detection Devices. Petrenko VA Microelectronics J; 2008 Feb; 39(2):202-207. PubMed ID: 19190724 [TBL] [Abstract][Full Text] [Related]
80. AOAC SMPR 2010.005. Standard method performance requirements for immunological-based handheld assays (HHAs) for detection of ricin in visible powders. J AOAC Int; 2011; 94(4):1356-8. PubMed ID: 21919369 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]