These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19699806)

  • 21. Spatiotemporal reconstruction of auditory steady-state responses to acoustic amplitude modulations: Potential sources beyond the auditory pathway.
    Farahani ED; Goossens T; Wouters J; van Wieringen A
    Neuroimage; 2017 Mar; 148():240-253. PubMed ID: 28110090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal dynamics of sinusoidal and non-sinusoidal amplitude modulation.
    Prendergast G; Johnson SR; Green GG
    Eur J Neurosci; 2010 Nov; 32(9):1599-607. PubMed ID: 21039961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repetition of complex frequency-modulated sweeps enhances neuromagnetic responses in the human auditory cortex.
    Altmann CF; Klein C; Heinemann LV; Wibral M; Gaese BH; Kaiser J
    Hear Res; 2011 Dec; 282(1-2):216-24. PubMed ID: 21839158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of attention on the auditory steady-state response.
    Ross B; Picton TW; Herdman AT; Pantev C
    Neurol Clin Neurophysiol; 2004 Nov; 2004():22. PubMed ID: 16012602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transient brain responses predict the temporal dynamics of sound detection in humans.
    Mäkinen V; May P; Tiitinen H
    Neuroimage; 2004 Feb; 21(2):701-6. PubMed ID: 14980572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MEG evidence that the central auditory system simultaneously encodes multiple temporal cues.
    Simpson MI; Barnes GR; Johnson SR; Hillebrand A; Singh KD; Green GG
    Eur J Neurosci; 2009 Sep; 30(6):1183-91. PubMed ID: 19723287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frequency organization of the 40-Hz auditory steady-state response in normal hearing and in tinnitus.
    Wienbruch C; Paul I; Weisz N; Elbert T; Roberts LE
    Neuroimage; 2006 Oct; 33(1):180-94. PubMed ID: 16901722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cortical oscillatory power changes during auditory oddball task revealed by spatially filtered magnetoencephalography.
    Ishii R; Canuet L; Herdman A; Gunji A; Iwase M; Takahashi H; Nakahachi T; Hirata M; Robinson SE; Pantev C; Takeda M
    Clin Neurophysiol; 2009 Mar; 120(3):497-504. PubMed ID: 19138878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency specific impairment of automatic pitch change detection by fMRI acoustic noise: an MEG study.
    Novitski N; Maess B; Tervaniemi M
    J Neurosci Methods; 2006 Jul; 155(1):149-59. PubMed ID: 16530843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Auditory steady-state responses to bone conduction stimuli in children with hearing loss.
    Swanepoel de W; Ebrahim S; Friedland P; Swanepoel A; Pottas L
    Int J Pediatr Otorhinolaryngol; 2008 Dec; 72(12):1861-71. PubMed ID: 18963045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of stimulus frequency and stimulation site on the N1m response of the human auditory cortex.
    Gabriel D; Veuillet E; Ragot R; Schwartz D; Ducorps A; Norena A; Durrant JD; Bonmartin A; Cotton F; Collet L
    Hear Res; 2004 Nov; 197(1-2):55-64. PubMed ID: 15504604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for modality-specific but not frequency-specific modulation of human primary auditory cortex by attention.
    Gander PE; Bosnyak DJ; Roberts LE
    Hear Res; 2010 Sep; 268(1-2):213-26. PubMed ID: 20547217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Auditory steady-state responses during and after a stimulus: Cortical sources, and the influence of attention and musicality.
    Manting CL; Gulyas B; Ullén F; Lundqvist D
    Neuroimage; 2021 Jun; 233():117962. PubMed ID: 33744455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The contribution of high frequencies to human brain activity underlying horizontal localization of natural spatial sounds.
    Leino S; May PJ; Alku P; Liikkanen LA; Tiitinen H
    BMC Neurosci; 2007 Sep; 8():78. PubMed ID: 17897443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human auditory steady state responses to binaural and monaural beats.
    Schwarz DW; Taylor P
    Clin Neurophysiol; 2005 Mar; 116(3):658-68. PubMed ID: 15721080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of the binaural auditory filter in the human brain.
    Soeta Y; Nakagawa S
    Neuroreport; 2007 Dec; 18(18):1939-43. PubMed ID: 18007191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Processing of novel sounds and frequency changes in the human auditory cortex: magnetoencephalographic recordings.
    Alho K; Winkler I; Escera C; Huotilainen M; Virtanen J; Jääskeläinen IP; Pekkonen E; Ilmoniemi RJ
    Psychophysiology; 1998 Mar; 35(2):211-24. PubMed ID: 9529947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.
    Hertrich I; Mathiak K; Lutzenberger W; Ackermann H
    Neuropsychologia; 2004; 42(13):1814-26. PubMed ID: 15351630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One set of sounds, two tonotopic maps: exploring auditory cortex with amplitude-modulated tones.
    Weisz N; Keil A; Wienbruch C; Hoffmeister S; Elbert T
    Clin Neurophysiol; 2004 Jun; 115(6):1249-58. PubMed ID: 15134691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MEG-measured auditory steady-state oscillations show high test-retest reliability: A sensor and source-space analysis.
    Tan HR; Gross J; Uhlhaas PJ
    Neuroimage; 2015 Nov; 122():417-26. PubMed ID: 26216274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.