These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19700370)

  • 61. Ribonucleoprotein particles: advances and challenges in computational methods.
    Dvir S; Argoetti A; Mandel-Gutfreund Y
    Curr Opin Struct Biol; 2018 Dec; 53():124-130. PubMed ID: 30172766
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evolutionary sequence modeling for discovery of peptide hormones.
    Sonmez K; Zaveri NT; Kerman IA; Burke S; Neal CR; Xie X; Watson SJ; Toll L
    PLoS Comput Biol; 2009 Jan; 5(1):e1000258. PubMed ID: 19132080
    [TBL] [Abstract][Full Text] [Related]  

  • 63. AIRBP: Accurate identification of RNA-binding proteins using machine learning techniques.
    Mishra A; Khanal R; Kabir WU; Hoque T
    Artif Intell Med; 2021 Mar; 113():102034. PubMed ID: 33685590
    [TBL] [Abstract][Full Text] [Related]  

  • 64. APRICOT: an integrated computational pipeline for the sequence-based identification and characterization of RNA-binding proteins.
    Sharan M; Förstner KU; Eulalio A; Vogel J
    Nucleic Acids Res; 2017 Jun; 45(11):e96. PubMed ID: 28334975
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Identification and Analysis of Key Residues in Protein-RNA Complexes.
    Kulandaisamy A; Srivastava A; Kumar P; Nagarajan R; Priya SB; Gromiha MM
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1436-1444. PubMed ID: 29993582
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Prediction and validation of the unexplored RNA-binding protein atlas of the human proteome.
    Zhao H; Yang Y; Janga SC; Kao CC; Zhou Y
    Proteins; 2014 Apr; 82(4):640-7. PubMed ID: 24123256
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Genomic survey of RNA recognition motif (RRM) containing RNA binding proteins from barley (Hordeum vulgare ssp. vulgare).
    Mahalingam R; Walling JG
    Genomics; 2020 Mar; 112(2):1829-1839. PubMed ID: 31669702
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Finding the target sites of RNA-binding proteins.
    Li X; Kazan H; Lipshitz HD; Morris QD
    Wiley Interdiscip Rev RNA; 2014; 5(1):111-30. PubMed ID: 24217996
    [TBL] [Abstract][Full Text] [Related]  

  • 69. DRNApred, fast sequence-based method that accurately predicts and discriminates DNA- and RNA-binding residues.
    Yan J; Kurgan L
    Nucleic Acids Res; 2017 Jun; 45(10):e84. PubMed ID: 28132027
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure.
    Li X; Quon G; Lipshitz HD; Morris Q
    RNA; 2010 Jun; 16(6):1096-107. PubMed ID: 20418358
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Annotating the protein-RNA interaction sites in proteins using evolutionary information and protein backbone structure.
    Li T; Li QZ
    J Theor Biol; 2012 Nov; 312():55-64. PubMed ID: 22874580
    [TBL] [Abstract][Full Text] [Related]  

  • 72. PREP-Mt: predictive RNA editor for plant mitochondrial genes.
    Mower JP
    BMC Bioinformatics; 2005 Apr; 6():96. PubMed ID: 15826309
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evolutionary Conservation and Diversification of Puf RNA Binding Proteins and Their mRNA Targets.
    Hogan GJ; Brown PO; Herschlag D
    PLoS Biol; 2015; 13(11):e1002307. PubMed ID: 26587879
    [TBL] [Abstract][Full Text] [Related]  

  • 74. RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins.
    Kazan H; Ray D; Chan ET; Hughes TR; Morris Q
    PLoS Comput Biol; 2010 Jul; 6(7):e1000832. PubMed ID: 20617199
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Finding RNA structure in the unstructured RBPome.
    Orenstein Y; Ohler U; Berger B
    BMC Genomics; 2018 Feb; 19(1):154. PubMed ID: 29463232
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Predicting sequence and structural specificities of RNA binding regions recognized by splicing factor SRSF1.
    Wang X; Juan L; Lv J; Wang K; Sanford JR; Liu Y
    BMC Genomics; 2011 Dec; 12 Suppl 5(Suppl 5):S8. PubMed ID: 22369183
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analyses on clustering of the conserved residues at protein-RNA interfaces and its application in binding site identification.
    Yang Z; Deng X; Liu Y; Gong W; Li C
    BMC Bioinformatics; 2020 Feb; 21(1):57. PubMed ID: 32066366
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structural modeling identified the tRNA-binding domain of Utp8p, an essential nucleolar component of the nuclear tRNA export machinery of Saccharomyces cerevisiae.
    McGuire AT; Keates RA; Cook S; Mangroo D
    Biochem Cell Biol; 2009 Apr; 87(2):431-43. PubMed ID: 19370060
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The identification of conserved interactions within the SH3 domain by alignment of sequences and structures.
    Larson SM; Davidson AR
    Protein Sci; 2000 Nov; 9(11):2170-80. PubMed ID: 11152127
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.