These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19700467)

  • 1. Variation in the durations of the photoperiod-sensitive and photoperiod-insensitive phases of development to flowering among eight maturity isolines of soyabean [Glycine max (L.) Merrill].
    Upadhyay AP; Summerfield RH; Ellis RH; Roberts EH; Qi A
    Ann Bot; 1994 Jul; 74(1):97-101. PubMed ID: 19700467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of photothermal flowering responses in maturity isolines of soyabean [Glycine max (L.) Merrill] cv. Clark.
    Upadhyay AP; Ellis RH; Summerfield RJ; Roberts EH; Qi A
    Ann Bot; 1994 Jul; 74(1):87-96. PubMed ID: 19700466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of field observations to characterise genotypic flowering responses to photoperiod and temperature: a soyabean exemplar.
    Roberts EH; Qi A; Ellis RH; Summerfield RJ; Lawn RJ; Shanmugasundaram S
    Theor Appl Genet; 1996 Sep; 93(4):519-33. PubMed ID: 24162343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model analysis of flowering phenology in recombinant inbred lines of barley.
    Yin X; Struik PC; Tang J; Qi C; Liu T
    J Exp Bot; 2005 Mar; 56(413):959-65. PubMed ID: 15689339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoperiodic counter of diapause induction in Pseudopidorus fasciata (Lepidoptera: Zygaenidae).
    Hua A; Xue FS; Xiao HJ; Zhu XF
    J Insect Physiol; 2005 Dec; 51(12):1287-94. PubMed ID: 16143342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of Photoperiod-Sensitive Phase in Chickpea (Cicer arietinum L.).
    Daba K; Warkentin TD; Bueckert R; Todd CD; Tar'an B
    Front Plant Sci; 2016; 7():478. PubMed ID: 27148306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of photoperiodic control of diapause between aestivation and hibernation in the cabbage butterfly Pieris melete.
    Xiao HJ; Li F; Wei XT; Xue FS
    J Insect Physiol; 2008 May; 54(5):755-64. PubMed ID: 18440018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate change and the flowering time of annual crops.
    Craufurd PQ; Wheeler TR
    J Exp Bot; 2009; 60(9):2529-39. PubMed ID: 19505929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma insulin-like growth factor-I concentrations and growth in juvenile halibut (Hippoglossus hippoglossus): effects of photoperiods and feeding regimes.
    Imsland AK; Foss A; Roth B; Stefansson SO; Vikingstad E; Pedersen S; Sandvik T; Norberg B
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Sep; 151(1):66-70. PubMed ID: 18577460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversion of flowering in Glycine Max (Fabaceae).
    Washburn CF; Thomas JF
    Am J Bot; 2000 Oct; 87(10):1425-38. PubMed ID: 11034918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the Effects of Photoperiod, Temperature and Daily Irradiance on Flowering Time of Soybean Isolines.
    Cober ER; Curtis DF; Stewart DW; Morrison MJ
    Plants (Basel); 2014 Nov; 3(4):476-97. PubMed ID: 27135515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using flowering times and leaf numbers to model the phases of photoperiod sensitivity in Antirrhinum majus L.
    Adams SR; Munir M; Valdés VM; Langton FA; Jackson SD
    Ann Bot; 2003 Nov; 92(5):689-96. PubMed ID: 14500328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Temperature and photoperiodic control of diapause induction in the ant Lepisiota semenovi (Hymenoptera, Formicidae) from Turkmenistan].
    Kipiatkov VE; Lopatina EB
    Zh Evol Biokhim Fiziol; 2009; 45(2):191-6. PubMed ID: 19435261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving quantitative flowering models through a better understanding of the phases of photoperiod sensitivity.
    Adams SR; Pearson S; Hadley P
    J Exp Bot; 2001 Apr; 52(357):655-62. PubMed ID: 11413201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of responses to temperature and photoperiod for time to flowering in a world lentil collection.
    Erskine W; Ellis RH; Summerfield RJ; Roberts EH; Hussain A
    Theor Appl Genet; 1990 Aug; 80(2):193-9. PubMed ID: 24220895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoperiod-induced plasticity of thermosensitivity and acquired thermotolerance in Locusta migratoria.
    Rodgers CI; Shoemaker KL; Robertson RM
    J Exp Biol; 2006 Dec; 209(Pt 23):4690-700. PubMed ID: 17114402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoperiod Affects Node Appearance Rate and Flowering in Early Maturing Soybean.
    Ort NWW; Morrison MJ; Cober ER; Samanfar B; Lawley YE
    Plants (Basel); 2022 Mar; 11(7):. PubMed ID: 35406851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-induced elevation of basal metabolic rate does not affect testis growth in great tits.
    Caro SP; Visser ME
    J Exp Biol; 2009 Jul; 212(Pt 13):1995-9. PubMed ID: 19525424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of flowering by 5-azacytidine in some plant species: relationship between the stability of photoperiodically induced flowering and flower-inducing effect of DNA demethylation.
    Kondo H; Miura T; Wada KC; Takeno K
    Physiol Plant; 2007 Nov; 131(3):462-9. PubMed ID: 18251884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model-based framework for the phenotypic characterization of the flowering of Medicago truncatula.
    Moreau D; Salon C; Munier-Jolain N
    Plant Cell Environ; 2007 Feb; 30(2):213-24. PubMed ID: 17238912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.