These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 19700638)
1. Role of ferroxidases in iron uptake and virulence of Cryptococcus neoformans. Jung WH; Hu G; Kuo W; Kronstad JW Eukaryot Cell; 2009 Oct; 8(10):1511-20. PubMed ID: 19700638 [TBL] [Abstract][Full Text] [Related]
2. A defect in iron uptake enhances the susceptibility of Cryptococcus neoformans to azole antifungal drugs. Kim J; Cho YJ; Do E; Choi J; Hu G; Cadieux B; Chun J; Lee Y; Kronstad JW; Jung WH Fungal Genet Biol; 2012 Nov; 49(11):955-66. PubMed ID: 22975303 [TBL] [Abstract][Full Text] [Related]
3. The Sec1/Munc18 (SM) protein Vps45 is involved in iron uptake, mitochondrial function and virulence in the pathogenic fungus Cryptococcus neoformans. Caza M; Hu G; Nielson ED; Cho M; Jung WH; Kronstad JW PLoS Pathog; 2018 Aug; 14(8):e1007220. PubMed ID: 30071112 [TBL] [Abstract][Full Text] [Related]
4. Role of ferric reductases in iron acquisition and virulence in the fungal pathogen Cryptococcus neoformans. Saikia S; Oliveira D; Hu G; Kronstad J Infect Immun; 2014 Feb; 82(2):839-50. PubMed ID: 24478097 [TBL] [Abstract][Full Text] [Related]
5. Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Jung WH; Kronstad JW Cell Microbiol; 2008 Feb; 10(2):277-84. PubMed ID: 18042257 [TBL] [Abstract][Full Text] [Related]
6. Cryptococcus neoformans requires the ESCRT protein Vps23 for iron acquisition from heme, for capsule formation, and for virulence. Hu G; Caza M; Cadieux B; Chan V; Liu V; Kronstad J Infect Immun; 2013 Jan; 81(1):292-302. PubMed ID: 23132495 [TBL] [Abstract][Full Text] [Related]
7. A P4-ATPase subunit of the Cdc50 family plays a role in iron acquisition and virulence in Cryptococcus neoformans. Hu G; Caza M; Bakkeren E; Kretschmer M; Bairwa G; Reiner E; Kronstad J Cell Microbiol; 2017 Jun; 19(6):. PubMed ID: 28061020 [TBL] [Abstract][Full Text] [Related]
8. The Monothiol Glutaredoxin Grx4 Regulates Iron Homeostasis and Virulence in Cryptococcus neoformans. Attarian R; Hu G; Sánchez-León E; Caza M; Croll D; Do E; Bach H; Missall T; Lodge J; Jung WH; Kronstad JW mBio; 2018 Dec; 9(6):. PubMed ID: 30514787 [TBL] [Abstract][Full Text] [Related]
9. Involvement of Mrs3/4 in Mitochondrial Iron Transport and Metabolism in Choi Y; Do E; Hu G; Caza M; Horianopoulos LC; Kronstad JW; Jung WH J Microbiol Biotechnol; 2020 Aug; 30(8):1142-1148. PubMed ID: 32522963 [TBL] [Abstract][Full Text] [Related]
10. Iron source preference and regulation of iron uptake in Cryptococcus neoformans. Jung WH; Sham A; Lian T; Singh A; Kosman DJ; Kronstad JW PLoS Pathog; 2008 Feb; 4(2):e45. PubMed ID: 18282105 [TBL] [Abstract][Full Text] [Related]
11. An encapsulation of iron homeostasis and virulence in Cryptococcus neoformans. Kronstad JW; Hu G; Jung WH Trends Microbiol; 2013 Sep; 21(9):457-65. PubMed ID: 23810126 [TBL] [Abstract][Full Text] [Related]
12. The Mannoprotein Cig1 supports iron acquisition from heme and virulence in the pathogenic fungus Cryptococcus neoformans. Cadieux B; Lian T; Hu G; Wang J; Biondo C; Teti G; Liu V; Murphy ME; Creagh AL; Kronstad JW J Infect Dis; 2013 Apr; 207(8):1339-47. PubMed ID: 23322859 [TBL] [Abstract][Full Text] [Related]
13. Defects in phosphate acquisition and storage influence virulence of Cryptococcus neoformans. Kretschmer M; Reiner E; Hu G; Tam N; Oliveira DL; Caza M; Yeon JH; Kim J; Kastrup CJ; Jung WH; Kronstad JW Infect Immun; 2014 Jul; 82(7):2697-712. PubMed ID: 24711572 [TBL] [Abstract][Full Text] [Related]
14. A putative P-type ATPase, Apt1, is involved in stress tolerance and virulence in Cryptococcus neoformans. Hu G; Kronstad JW Eukaryot Cell; 2010 Jan; 9(1):74-83. PubMed ID: 19949048 [TBL] [Abstract][Full Text] [Related]
15. Role of CTR4 in the Virulence of Cryptococcus neoformans. Waterman SR; Park YD; Raja M; Qiu J; Hammoud DA; O'Halloran TV; Williamson PR mBio; 2012; 3(5):. PubMed ID: 23033470 [TBL] [Abstract][Full Text] [Related]
16. HapX positively and negatively regulates the transcriptional response to iron deprivation in Cryptococcus neoformans. Jung WH; Saikia S; Hu G; Wang J; Fung CK; D'Souza C; White R; Kronstad JW PLoS Pathog; 2010 Nov; 6(11):e1001209. PubMed ID: 21124817 [TBL] [Abstract][Full Text] [Related]
17. A Cytoplasmic Heme Sensor Illuminates the Impacts of Mitochondrial and Vacuolar Functions and Oxidative Stress on Heme-Iron Homeostasis in Cryptococcus neoformans. Bairwa G; Sánchez-León E; Do E; Jung WH; Kronstad JW mBio; 2020 Jul; 11(4):. PubMed ID: 32723917 [TBL] [Abstract][Full Text] [Related]
18. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans. Jung WH; Sham A; White R; Kronstad JW PLoS Biol; 2006 Nov; 4(12):e410. PubMed ID: 17121456 [TBL] [Abstract][Full Text] [Related]
19. Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans. Do E; Hu G; Caza M; Oliveira D; Kronstad JW; Jung WH Fungal Genet Biol; 2015 Feb; 75():11-9. PubMed ID: 25554701 [TBL] [Abstract][Full Text] [Related]
20. The endosomal sorting complex required for transport machinery influences haem uptake and capsule elaboration in Cryptococcus neoformans. Hu G; Caza M; Cadieux B; Bakkeren E; Do E; Jung WH; Kronstad JW Mol Microbiol; 2015 Jun; 96(5):973-92. PubMed ID: 25732100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]