These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 19701087)

  • 1. Lexical effects on spoken-word recognition in children with normal hearing.
    Krull V; Choi S; Kirk KI; Prusick L; French B
    Ear Hear; 2010 Feb; 31(1):102-14. PubMed ID: 19701087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of lexically controlled words and sentences by children with normal hearing and children with cochlear implants.
    Eisenberg LS; Martinez AS; Holowecky SR; Pogorelsky S
    Ear Hear; 2002 Oct; 23(5):450-62. PubMed ID: 12411778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of the neighborhood activation theory in normal and hearing-impaired listeners.
    Dirks DD; Takayanagi S; Moshfegh A; Noffsinger PD; Fausti SA
    Ear Hear; 2001 Feb; 22(1):1-13. PubMed ID: 11271971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of Grammatical Context on Children's Recognition of s/z-Inflected Words.
    Spratford M; McLean HH; McCreery R
    J Am Acad Audiol; 2017 Oct; 28(9):799-809. PubMed ID: 28972469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some Neurocognitive Correlates of Noise-Vocoded Speech Perception in Children With Normal Hearing: A Replication and Extension of ).
    Roman AS; Pisoni DB; Kronenberger WG; Faulkner KF
    Ear Hear; 2017; 38(3):344-356. PubMed ID: 28045787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speech perception in children with cochlear implants: effects of lexical difficulty, talker variability, and word length.
    Kirk KI; Hay-McCutcheon M; Sehgal ST; Miyamoto RT
    Ann Otol Rhinol Laryngol Suppl; 2000 Dec; 185():79-81. PubMed ID: 11141016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extrinsic Cognitive Load Impairs Spoken Word Recognition in High- and Low-Predictability Sentences.
    Hunter CR; Pisoni DB
    Ear Hear; 2018; 39(2):378-389. PubMed ID: 28945658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of recognition performances in speech-spectrum noise by listeners with normal hearing on PB-50, CID W-22, NU-6, W-1 spondaic words, and monosyllabic digits spoken by the same speaker.
    Wilson RH; McArdle R; Roberts H
    J Am Acad Audiol; 2008 Jun; 19(6):496-506. PubMed ID: 19253782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standard-Chinese Lexical Neighborhood Test in normal-hearing young children.
    Liu C; Liu S; Zhang N; Yang Y; Kong Y; Zhang L
    Int J Pediatr Otorhinolaryngol; 2011 Jun; 75(6):774-81. PubMed ID: 21458862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speech Perception: Phonological Neighborhood Effects on Word Recognition Persist Despite Semantic Sentence Context.
    Cervera-Crespo T; González-Álvarez J
    Percept Mot Skills; 2019 Dec; 126(6):1047-1057. PubMed ID: 31412741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can Closed-Set Word Recognition Differentially Assess Vowel and Consonant Perception for School-Age Children With and Without Hearing Loss?
    Buss E; Felder J; Miller MK; Leibold LJ; Calandruccio L
    J Speech Lang Hear Res; 2022 Oct; 65(10):3934-3950. PubMed ID: 36194777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lexical and age effects on word recognition in noise in normal-hearing children.
    Ren C; Liu S; Liu H; Kong Y; Liu X; Li S
    Int J Pediatr Otorhinolaryngol; 2015 Dec; 79(12):2023-7. PubMed ID: 26545791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lexical effects on spoken word recognition performance among Mandarin-speaking children with normal hearing and cochlear implants.
    Wang NM; Wu CM; Kirk KI
    Int J Pediatr Otorhinolaryngol; 2010 Aug; 74(8):883-90. PubMed ID: 20846499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech Perception in Noise and Listening Effort of Older Adults With Nonlinear Frequency Compression Hearing Aids.
    Shehorn J; Marrone N; Muller T
    Ear Hear; 2018; 39(2):215-225. PubMed ID: 28806193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development, reliability, and validity of PRESTO: a new high-variability sentence recognition test.
    Gilbert JL; Tamati TN; Pisoni DB
    J Am Acad Audiol; 2013 Jan; 24(1):26-36. PubMed ID: 23231814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lexical effects on spoken word recognition by pediatric cochlear implant users.
    Kirk KI; Pisoni DB; Osberger MJ
    Ear Hear; 1995 Oct; 16(5):470-81. PubMed ID: 8654902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delayed Lexical Access and Cascading Effects on Spreading Semantic Activation During Spoken Word Recognition in Children With Hearing Aids and Cochlear Implants: Evidence From Eye-Tracking.
    Klein KE; Walker EA; McMurray B
    Ear Hear; 2023 Mar-Apr 01; 44(2):338-357. PubMed ID: 36253909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Revised Speech Perception in Noise Test (R-SPIN) in a multiple signal-to-noise ratio paradigm.
    Wilson RH; McArdle R; Watts KL; Smith SL
    J Am Acad Audiol; 2012 Sep; 23(8):590-605. PubMed ID: 22967734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Children's speech recognition in noise using omni-directional and dual-microphone hearing aid technology.
    Gravel JS; Fausel N; Liskow C; Chobot J
    Ear Hear; 1999 Feb; 20(1):1-11. PubMed ID: 10037061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of lexical factors on word recognition among normal-hearing and hearing-impaired listeners.
    Dirks DD; Takayana S; Moshfegh A
    J Am Acad Audiol; 2001 May; 12(5):233-44. PubMed ID: 11392435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.