BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 19701088)

  • 1. Clinical test performance of distortion-product otoacoustic emissions using new stimulus conditions.
    Johnson TA; Neely ST; Kopun JG; Dierking DM; Tan H; Gorga MP
    Ear Hear; 2010 Feb; 31(1):74-83. PubMed ID: 19701088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure.
    Johnson TA; Baranowski LG
    Ear Hear; 2012; 33(2):239-49. PubMed ID: 21918451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochlear Mechanisms and Otoacoustic Emission Test Performance.
    Go NA; Stamper GC; Johnson TA
    Ear Hear; 2019; 40(2):401-417. PubMed ID: 29952805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further efforts to predict pure-tone thresholds from distortion product otoacoustic emission input/output functions.
    Gorga MP; Neely ST; Dorn PA; Hoover BM
    J Acoust Soc Am; 2003 Jun; 113(6):3275-84. PubMed ID: 12822800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of calibration method on distortion-product otoacoustic emission measurements at and around 4 kHz.
    Reuven ML; Neely ST; Kopun JG; Rasetshwane DM; Allen JB; Tan H; Gorga MP
    Ear Hear; 2013; 34(6):779-88. PubMed ID: 24165303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distortion product otoacoustic emission test performance for a priori criteria and for multifrequency audiometric standards.
    Gorga MP; Neely ST; Dorn PA
    Ear Hear; 1999 Aug; 20(4):345-62. PubMed ID: 10466570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears.
    Boege P; Janssen T
    J Acoust Soc Am; 2002 Apr; 111(4):1810-8. PubMed ID: 12002865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of calibration method on distortion-product otoacoustic emission measurements: II. threshold prediction.
    Rogers AR; Burke SR; Kopun JG; Tan H; Neely ST; Gorga MP
    Ear Hear; 2010 Aug; 31(4):546-54. PubMed ID: 20458245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)].
    Hoth S
    Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From laboratory to clinic: a large scale study of distortion product otoacoustic emissions in ears with normal hearing and ears with hearing loss.
    Gorga MP; Neely ST; Ohlrich B; Hoover B; Redner J; Peters J
    Ear Hear; 1997 Dec; 18(6):440-55. PubMed ID: 9416447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distortion product otoacoustic emission test performance when both 2f1-f2 and 2f2-f1 are used to predict auditory status.
    Gorga MP; Nelson K; Davis T; Dorn PA; Neely ST
    J Acoust Soc Am; 2000 Apr; 107(4):2128-35. PubMed ID: 10790038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distortion product otoacoustic emission suppression tuning curves in normal-hearing and hearing-impaired human ears.
    Gorga MP; Neely ST; Dierking DM; Dorn PA; Hoover BM; Fitzpatrick DF
    J Acoust Soc Am; 2003 Jul; 114(1):263-78. PubMed ID: 12880040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of hearing loss using 2f2-f1 and 2f1-f2 distortion-product otoacoustic emissions.
    Fitzgerald TS; Prieve BA
    J Speech Lang Hear Res; 2005 Oct; 48(5):1165-86. PubMed ID: 16411804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Test-retest reliability of distortion-product thresholds compared to behavioral auditory thresholds.
    Bader K; Dierkes L; Braun LH; Gummer AW; Dalhoff E; Zelle D
    Hear Res; 2021 Jul; 406():108232. PubMed ID: 33984603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-source interference as the major reason for auditory-threshold estimation error based on DPOAE input-output functions in normal-hearing subjects.
    Dalhoff E; Turcanu D; Vetešník A; Gummer AW
    Hear Res; 2013 Feb; 296():67-82. PubMed ID: 23268357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of primary-level and primary-frequency ratios on human distortion product otoacoustic emissions.
    Johnson TA; Neely ST; Garner CA; Gorga MP
    J Acoust Soc Am; 2006 Jan; 119(1):418-28. PubMed ID: 16454296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cochlear compression estimates from measurements of distortion-product otoacoustic emissions.
    Neely ST; Gorga MP; Dorn PA
    J Acoust Soc Am; 2003 Sep; 114(3):1499-507. PubMed ID: 14514203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults.
    Dreisbach LE; Long KM; Lees SE
    Ear Hear; 2006 Oct; 27(5):466-79. PubMed ID: 16957498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of cochlear hearing disorders: normative distortion product otoacoustic emission measurements.
    Mills DM; Feeney MP; Gates GA
    Ear Hear; 2007 Dec; 28(6):778-92. PubMed ID: 17982366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine structure of distortion product otoacoustic emissions: its dependence on age and hearing threshold and clinical implications.
    Wagner W; Plinkert PK; Vonthein R; Plontke SK
    Eur Arch Otorhinolaryngol; 2008 Oct; 265(10):1165-72. PubMed ID: 18301908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.