These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 19701157)

  • 1. A quantitative assessment of the yeast lipidome using electrospray ionization mass spectrometry.
    Bourque SD; Titorenko VI
    J Vis Exp; 2009 Aug; (30):. PubMed ID: 19701157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Analysis of the Cellular Lipidome of Saccharomyces Cerevisiae Using Liquid Chromatography Coupled with Tandem Mass Spectrometry.
    Mohammad K; Jiang H; Hossain MI; Titorenko VI
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32202524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Derivatization and Ultrahigh Resolution and Accurate Mass Spectrometry Strategies for "Shotgun" Lipidome Analysis.
    Ryan E; Reid GE
    Acc Chem Res; 2016 Sep; 49(9):1596-604. PubMed ID: 27575732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane.
    Schneiter R; Brügger B; Sandhoff R; Zellnig G; Leber A; Lampl M; Athenstaedt K; Hrastnik C; Eder S; Daum G; Paltauf F; Wieland FT; Kohlwein SD
    J Cell Biol; 1999 Aug; 146(4):741-54. PubMed ID: 10459010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncovering the complexity of the yeast lipidome by means of nLC/NSI-MS/MS.
    Danne-Rasche N; Rubenzucker S; Ahrends R
    Anal Chim Acta; 2020 Dec; 1140():199-209. PubMed ID: 33218482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry.
    Ovčačíková M; Lísa M; Cífková E; Holčapek M
    J Chromatogr A; 2016 Jun; 1450():76-85. PubMed ID: 27179677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted Analysis of the Plant Lipidome by UPLC-NanoESI-MS/MS.
    Herrfurth C; Liu YT; Feussner I
    Methods Mol Biol; 2021; 2295():135-155. PubMed ID: 34047976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of normal phase chromatographic conditions for lipid analysis and comparison of associated detection techniques.
    Abreu S; Solgadi A; Chaminade P
    J Chromatogr A; 2017 Sep; 1514():54-71. PubMed ID: 28774713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexibility of a eukaryotic lipidome--insights from yeast lipidomics.
    Klose C; Surma MA; Gerl MJ; Meyenhofer F; Shevchenko A; Simons K
    PLoS One; 2012; 7(4):e35063. PubMed ID: 22529973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atmospheric pressure photoionization as a powerful tool for large-scale lipidomic studies.
    Gaudin M; Imbert L; Libong D; Chaminade P; Brunelle A; Touboul D; Laprévote O
    J Am Soc Mass Spectrom; 2012 May; 23(5):869-79. PubMed ID: 22359092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid Extraction from Yeast Cells.
    Knittelfelder OL; Kohlwein SD
    Cold Spring Harb Protoc; 2017 May; 2017(5):. PubMed ID: 28461651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry.
    Ejsing CS; Sampaio JL; Surendranath V; Duchoslav E; Ekroos K; Klemm RW; Simons K; Shevchenko A
    Proc Natl Acad Sci U S A; 2009 Feb; 106(7):2136-41. PubMed ID: 19174513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast lipid analysis and quantification by mass spectrometry.
    Guan XL; Riezman I; Wenk MR; Riezman H
    Methods Enzymol; 2010; 470():369-91. PubMed ID: 20946818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification of mitochondria from yeast cells.
    Gregg C; Kyryakov P; Titorenko VI
    J Vis Exp; 2009 Aug; (30):. PubMed ID: 19704406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of lipid particles from yeast.
    Connerth M; Grillitsch K; Köfeler H; Daum G
    Methods Mol Biol; 2009; 579():359-74. PubMed ID: 19763485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Off-line mixed-mode liquid chromatography coupled with reversed phase high performance liquid chromatography-high resolution mass spectrometry to improve coverage in lipidomics analysis.
    Narváez-Rivas M; Vu N; Chen GY; Zhang Q
    Anal Chim Acta; 2017 Feb; 954():140-150. PubMed ID: 28081809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UHPSFC/ESI-MS Analysis of Lipids.
    Lísa M; Holčapek M
    Methods Mol Biol; 2018; 1730():73-82. PubMed ID: 29363066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of lipidomic composition of cell lines and tissues of breast cancer patients using hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry and multivariate data analysis.
    Cífková E; Lísa M; Hrstka R; Vrána D; Gatěk J; Melichar B; Holčapek M
    Rapid Commun Mass Spectrom; 2017 Feb; 31(3):253-263. PubMed ID: 27862481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ambient Lipidomic Analysis of Single Mammalian Oocytes and Preimplantation Embryos Using Desorption Electrospray Ionization (DESI) Mass Spectrometry.
    Ferreira CR; Pirro V; Jarmusch AK; Alfaro CM; Cooks RG
    Methods Mol Biol; 2020; 2064():159-179. PubMed ID: 31565774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of yeast lipid droplet proteome and lipidome.
    Schmidt C; Ploier B; Koch B; Daum G
    Methods Cell Biol; 2013; 116():15-37. PubMed ID: 24099285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.