These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 19701612)
1. Amylase production by Saccharomycopsis fibuligera A11 in solid-state fermentation for hydrolysis of Cassava starch. Chen L; Chi ZM; Chi Z; Li M Appl Biochem Biotechnol; 2010 Sep; 162(1):252-63. PubMed ID: 19701612 [TBL] [Abstract][Full Text] [Related]
2. Use of response surface methodology for optimizing process parameters for high inulinase production by the marine yeast Cryptococcus aureus G7a in solid-state fermentation and hydrolysis of inulin. Sheng J; Chi Z; Yan K; Wang X; Gong F; Li J Bioprocess Biosyst Eng; 2009 Apr; 32(3):333-9. PubMed ID: 18726619 [TBL] [Abstract][Full Text] [Related]
3. Alpha-amylase production by Bacillus subtilis CM3 in solid state fermentation using cassava fibrous residue. Swain MR; Ray RC J Basic Microbiol; 2007 Oct; 47(5):417-25. PubMed ID: 17910107 [TBL] [Abstract][Full Text] [Related]
4. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. Kunamneni A; Permaul K; Singh S J Biosci Bioeng; 2005 Aug; 100(2):168-71. PubMed ID: 16198259 [TBL] [Abstract][Full Text] [Related]
5. Alpha-amylase production by Streptomyces erumpens MTCC 7317 in solid state fermentation using response surface methodology (RSM). Kar S; Ray RC; Mohapatra UB Pol J Microbiol; 2008; 57(4):289-96. PubMed ID: 19275042 [TBL] [Abstract][Full Text] [Related]
6. Enhanced production of raw starch degrading enzyme using agro-industrial waste mixtures by thermotolerant Rhizopus microsporus for raw cassava chip saccharification in ethanol production. Trakarnpaiboon S; Srisuk N; Piyachomkwan K; Sakai K; Kitpreechavanich V Prep Biochem Biotechnol; 2017 Sep; 47(8):813-823. PubMed ID: 28636431 [TBL] [Abstract][Full Text] [Related]
7. Development of a solid-state fermentation process for production of an alpha amylase with potentially interesting properties. Hashemi M; Razavi SH; Shojaosadati SA; Mousavi SM; Khajeh K; Safari M J Biosci Bioeng; 2010 Sep; 110(3):333-7. PubMed ID: 20547329 [TBL] [Abstract][Full Text] [Related]
8. The production of a new fungal alpha-amylase degraded the raw starch by means of solid-state fermentation. Balkan B; Ertan F Prep Biochem Biotechnol; 2010; 40(3):213-28. PubMed ID: 20623432 [TBL] [Abstract][Full Text] [Related]
9. Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonas taiwanensis On1. Chen SD; Sheu DS; Chen WM; Lo YC; Huang TI; Lin CY; Chang JS Biotechnol Prog; 2007; 23(6):1312-20. PubMed ID: 17924646 [TBL] [Abstract][Full Text] [Related]
10. Production and optimization studies of cephalosporin C by solid state fermentation. Ellaiah P; Premkumar J; Kanthachari PV; Adinarayana K Hindustan Antibiot Bull; 2002; 44(1-4):1-7. PubMed ID: 15061587 [TBL] [Abstract][Full Text] [Related]
11. Optimization of solid-state enzymatic hydrolysis of chestnut using mixtures of alpha-amylase and glucoamylase. López C; Torrado A; Guerra NP; Pastrana L J Agric Food Chem; 2005 Feb; 53(4):989-95. PubMed ID: 15713010 [TBL] [Abstract][Full Text] [Related]
12. Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Thang VH; Kanda K; Kobayashi G Appl Biochem Biotechnol; 2010 May; 161(1-8):157-70. PubMed ID: 19771401 [TBL] [Abstract][Full Text] [Related]
13. Multi-objective optimization of bioethanol production during cold enzyme starch hydrolysis in very high gravity cassava mash. Yingling B; Li C; Honglin W; Xiwen Y; Zongcheng Y Bioresour Technol; 2011 Sep; 102(17):8077-84. PubMed ID: 21708462 [TBL] [Abstract][Full Text] [Related]
14. Process parameters study of α-amylase production in a packed-bed bioreactor under solid-state fermentation with possibility of temperature monitoring. Derakhti S; Shojaosadati SA; Hashemi M; Khajeh K Prep Biochem Biotechnol; 2012; 42(3):203-16. PubMed ID: 22509847 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. Rattanachomsri U; Tanapongpipat S; Eurwilaichitr L; Champreda V J Biosci Bioeng; 2009 May; 107(5):488-93. PubMed ID: 19393545 [TBL] [Abstract][Full Text] [Related]
16. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera. Eksteen JM; Van Rensburg P; Cordero Otero RR; Pretorius IS Biotechnol Bioeng; 2003 Dec; 84(6):639-46. PubMed ID: 14595776 [TBL] [Abstract][Full Text] [Related]
17. Comparative profiles of alpha-amylase production in conventional tray reactor and GROWTEK bioreactor. Bhanja T; Rout S; Banerjee R; Bhattacharyya BC Bioprocess Biosyst Eng; 2007 Sep; 30(5):369-76. PubMed ID: 17573554 [TBL] [Abstract][Full Text] [Related]
18. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol. Wang R; Wang D; Gao X; Hong J Biotechnol Prog; 2014; 30(2):338-47. PubMed ID: 24478139 [TBL] [Abstract][Full Text] [Related]
19. Aspergillus oryzae S2 alpha-amylase production under solid state fermentation: optimization of culture conditions. Sahnoun M; Kriaa M; Elgharbi F; Ayadi DZ; Bejar S; Kammoun R Int J Biol Macromol; 2015 Apr; 75():73-80. PubMed ID: 25617840 [TBL] [Abstract][Full Text] [Related]
20. Solid substrate fermentation of cassava fibrous residue for production of alpha-amylase, lactic acid and ethanol. Ray RC; Mohapatra S; Panda S; Kar S J Environ Biol; 2008 Jan; 29(1):111-5. PubMed ID: 18831342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]