These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 19701630)

  • 1. EMG responses to unexpected perturbations are delayed in slower movements.
    David FJ; Poon C; Niu CM; Corcos DM; Shapiro MB
    Exp Brain Res; 2009 Oct; 199(1):27-38. PubMed ID: 19701630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proprioceptive feedback during point-to-point arm movements is tuned to the expected dynamics of the task.
    Shapiro MB; Niu CM; Poon C; David FJ; Corcos DM
    Exp Brain Res; 2009 Jun; 195(4):575-91. PubMed ID: 19434401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EMG responses to an unexpected load in fast movements are delayed with an increase in the expected movement time.
    Shapiro MB; Gottlieb GL; Corcos DM
    J Neurophysiol; 2004 May; 91(5):2135-47. PubMed ID: 14724262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of single-limb inertial loading on bilateral reaching: interlimb interactions.
    Hatzitaki V; McKinley P
    Exp Brain Res; 2001 Sep; 140(1):34-45. PubMed ID: 11500796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of proprioceptive feedback control in movement sequences through intermediate targets.
    Niu CM; Corcos DM; Shapiro MB
    Exp Brain Res; 2012 Jan; 216(2):191-201. PubMed ID: 22071685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue induced changes in phasic muscle activation patterns for fast elbow flexion movements.
    Corcos DM; Jiang HY; Wilding J; Gottlieb GL
    Exp Brain Res; 2002 Jan; 142(1):1-12. PubMed ID: 11797079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ballistic reactions under different motor sets.
    Castellote JM; Valls-Solé J; Sanegre MT
    Exp Brain Res; 2004 Sep; 158(1):35-42. PubMed ID: 15007585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central modifications of reflex parameters may underlie the fastest arm movements.
    Adamovich SV; Levin MF; Feldman AG
    J Neurophysiol; 1997 Mar; 77(3):1460-9. PubMed ID: 9084611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle activation patterns in point-to-point and reversal movements in healthy, older subjects and in subjects with Parkinson's disease.
    Pfann KD; Robichaud JA; Gottlieb GL; Comella CL; Brandabur M; Corcos DM
    Exp Brain Res; 2004 Jul; 157(1):67-78. PubMed ID: 14991213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Threshold control of arm posture and movement adaptation to load.
    Foisy M; Feldman AG
    Exp Brain Res; 2006 Nov; 175(4):726-44. PubMed ID: 16847611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromyographic responses to constant position errors imposed during voluntary elbow joint movement in human.
    Bennett DJ
    Exp Brain Res; 1993; 95(3):499-508. PubMed ID: 8224076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromuscular control mechanisms and strategy in arm movements of attempted supranormal speed.
    Ives JC; Abraham L; Kroll W
    Res Q Exerc Sport; 1999 Dec; 70(4):335-48. PubMed ID: 10797892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal shift from velocity to position proprioceptive feedback control during reaching movements.
    Niu CM; Corcos DM; Shapiro MB
    J Neurophysiol; 2010 Nov; 104(5):2512-22. PubMed ID: 20739602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson's disease.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2010 Mar; 201(3):509-25. PubMed ID: 19902195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organizing principles for single-joint movements. I. A speed-insensitive strategy.
    Gottlieb GL; Corcos DM; Agarwal GC
    J Neurophysiol; 1989 Aug; 62(2):342-57. PubMed ID: 2769334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-trial adaptation of movement to changes in load.
    Weeks DL; Aubert MP; Feldman AG; Levin MF
    J Neurophysiol; 1996 Jan; 75(1):60-74. PubMed ID: 8822542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromyographic responses to an unexpected load in fast voluntary movements: descending regulation of segmental reflexes.
    Shapiro MB; Gottlieb GL; Moore CG; Corcos DM
    J Neurophysiol; 2002 Aug; 88(2):1059-63. PubMed ID: 12163554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.