These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 19701911)

  • 1. Biomimetic PEG hydrogels crosslinked with minimal plasmin-sensitive tri-amino acid peptides.
    Jo YS; Rizzi SC; Ehrbar M; Weber FE; Hubbell JA; Lutolf MP
    J Biomed Mater Res A; 2010 Jun; 93(3):870-7. PubMed ID: 19701911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatically degradable poly(ethylene glycol) based hydrogels for adipose tissue engineering.
    Brandl FP; Seitz AK; Tessmar JK; Blunk T; Göpferich AM
    Biomaterials; 2010 May; 31(14):3957-66. PubMed ID: 20170951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels.
    Patterson J; Hubbell JA
    Biomaterials; 2011 Feb; 32(5):1301-10. PubMed ID: 21040970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics.
    Rizzi SC; Ehrbar M; Halstenberg S; Raeber GP; Schmoekel HG; Hagenmüller H; Müller R; Weber FE; Hubbell JA
    Biomacromolecules; 2006 Nov; 7(11):3019-29. PubMed ID: 17096527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic extracellular matrices for in situ tissue engineering.
    Pratt AB; Weber FE; Schmoekel HG; Müller R; Hubbell JA
    Biotechnol Bioeng; 2004 Apr; 86(1):27-36. PubMed ID: 15007838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor.
    Park J; Lim E; Back S; Na H; Park Y; Sun K
    J Biomed Mater Res A; 2010 Jun; 93(3):1091-9. PubMed ID: 19768787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the crosslinking kinetics of multi-arm poly(ethylene glycol) hydrogels formed via Michael-type addition.
    Kim J; Kong YP; Niedzielski SM; Singh RK; Putnam AJ; Shikanov A
    Soft Matter; 2016 Feb; 12(7):2076-85. PubMed ID: 26750719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable poly(ethylene glycol)-peptide hydrogels with well-defined structure and properties for cell delivery.
    Liu SQ; Ee PL; Ke CY; Hedrick JL; Yang YY
    Biomaterials; 2009 Mar; 30(8):1453-61. PubMed ID: 19097642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2.
    Patterson J; Hubbell JA
    Biomaterials; 2010 Oct; 31(30):7836-45. PubMed ID: 20667588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cathepsin K-sensitive poly(ethylene glycol) hydrogels for degradation in response to bone resorption.
    Hsu CW; Olabisi RM; Olmsted-Davis EA; Davis AR; West JL
    J Biomed Mater Res A; 2011 Jul; 98(1):53-62. PubMed ID: 21523904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production.
    Bryant SJ; Bender RJ; Durand KL; Anseth KS
    Biotechnol Bioeng; 2004 Jun; 86(7):747-55. PubMed ID: 15162450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo design of saccharide-peptide hydrogels as synthetic scaffolds for tailored cell responses.
    Liao SW; Yu TB; Guan Z
    J Am Chem Soc; 2009 Dec; 131(48):17638-46. PubMed ID: 19908839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Material properties and cytocompatibility of injectable MMP degradable poly(lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells.
    He X; Jabbari E
    Biomacromolecules; 2007 Mar; 8(3):780-92. PubMed ID: 17295540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro cytotoxicity of unsaturated oligo[poly(ethylene glycol) fumarate] macromers and their cross-linked hydrogels.
    Shin H; Temenoff JS; Mikos AG
    Biomacromolecules; 2003; 4(3):552-60. PubMed ID: 12741769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.
    Brink KS; Yang PJ; Temenoff JS
    Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of crosslinking on the stiffness and degradation of dermis-derived hydrogels.
    Pilipchuk SP; Vaicik MK; Larson JC; Gazyakan E; Cheng MH; Brey EM
    J Biomed Mater Res A; 2013 Oct; 101(10):2883-95. PubMed ID: 23505054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel, tissue occlusive poly(ethylene glycol) hydrogel material.
    Wechsler S; Fehr D; Molenberg A; Raeber G; Schense JC; Weber FE
    J Biomed Mater Res A; 2008 May; 85(2):285-92. PubMed ID: 17688293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of macroporous poly(ethylene glycol)-based hydrogels for tissue engineering application.
    Sannino A; Netti PA; Madaghiele M; Coccoli V; Luciani A; Maffezzoli A; Nicolais L
    J Biomed Mater Res A; 2006 Nov; 79(2):229-36. PubMed ID: 16752396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain.
    Bryant SJ; Anseth KS; Lee DA; Bader DL
    J Orthop Res; 2004 Sep; 22(5):1143-9. PubMed ID: 15304291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of biocompatible, degradable, light-curable, polyurethane-based elastic hydrogels.
    Zhang C; Zhang N; Wen X
    J Biomed Mater Res A; 2007 Sep; 82(3):637-50. PubMed ID: 17323316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.