These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 19701911)

  • 41. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering.
    Rafat M; Li F; Fagerholm P; Lagali NS; Watsky MA; Munger R; Matsuura T; Griffith M
    Biomaterials; 2008 Oct; 29(29):3960-72. PubMed ID: 18639928
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels.
    Gobin AS; West JL
    Biotechnol Prog; 2003; 19(6):1781-5. PubMed ID: 14656156
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Controlled release of tethered molecules via engineered hydrogel degradation: model development and validation.
    DuBose JW; Cutshall C; Metters AT
    J Biomed Mater Res A; 2005 Jul; 74(1):104-16. PubMed ID: 15940664
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part I: Development and physicochemical characteristics.
    Rizzi SC; Hubbell JA
    Biomacromolecules; 2005; 6(3):1226-38. PubMed ID: 15877337
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane). III. In vivo biocompatibility and biostability.
    Hyung Park J; Bae YH
    J Biomed Mater Res A; 2003 Feb; 64(2):309-19. PubMed ID: 12522818
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells.
    Kim J; Kim IS; Cho TH; Lee KB; Hwang SJ; Tae G; Noh I; Lee SH; Park Y; Sun K
    Biomaterials; 2007 Apr; 28(10):1830-7. PubMed ID: 17208295
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Osteoblastic bone formation is induced by using nanogel-crosslinking hydrogel as novel scaffold for bone growth factor.
    Hayashi C; Hasegawa U; Saita Y; Hemmi H; Hayata T; Nakashima K; Ezura Y; Amagasa T; Akiyoshi K; Noda M
    J Cell Physiol; 2009 Jul; 220(1):1-7. PubMed ID: 19301257
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Resorbable, amino acid-based poly(ester urea)s crosslinked with osteogenic growth peptide with enhanced mechanical properties and bioactivity.
    Stakleff KS; Lin F; Smith Callahan LA; Wade MB; Esterle A; Miller J; Graham M; Becker ML
    Acta Biomater; 2013 Feb; 9(2):5132-42. PubMed ID: 22975625
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapidly curable chitosan-PEG hydrogels as tissue adhesives for hemostasis and wound healing.
    Lih E; Lee JS; Park KM; Park KD
    Acta Biomater; 2012 Sep; 8(9):3261-9. PubMed ID: 22617740
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing.
    Seliktar D; Zisch AH; Lutolf MP; Wrana JL; Hubbell JA
    J Biomed Mater Res A; 2004 Mar; 68(4):704-16. PubMed ID: 14986325
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions.
    Ehrbar M; Rizzi SC; Schoenmakers RG; Miguel BS; Hubbell JA; Weber FE; Lutolf MP
    Biomacromolecules; 2007 Oct; 8(10):3000-7. PubMed ID: 17883273
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Poly(ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualize collagenase activity during three-dimensional cell migration.
    Lee SH; Moon JJ; Miller JS; West JL
    Biomaterials; 2007 Jul; 28(20):3163-70. PubMed ID: 17395258
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-dimensional culture of differentiating marrow stromal osteoblasts in biomimetic poly(propylene fumarate-co-ethylene glycol)-based macroporous hydrogels.
    Behravesh E; Mikos AG
    J Biomed Mater Res A; 2003 Sep; 66(3):698-706. PubMed ID: 12918054
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering.
    Martens PJ; Bryant SJ; Anseth KS
    Biomacromolecules; 2003; 4(2):283-92. PubMed ID: 12625723
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Shear-reversibly crosslinked alginate hydrogels for tissue engineering.
    Park H; Kang SW; Kim BS; Mooney DJ; Lee KY
    Macromol Biosci; 2009 Sep; 9(9):895-901. PubMed ID: 19422012
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functionalized d-form self-assembling peptide hydrogels for bone regeneration.
    He B; Ou Y; Zhou A; Chen S; Zhao W; Zhao J; Li H; Zhu Y; Zhao Z; Jiang D
    Drug Des Devel Ther; 2016; 10():1379-88. PubMed ID: 27114701
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enzymatic crosslinking to fabricate antioxidant peptide-based supramolecular hydrogel for improving cutaneous wound healing.
    Wei Q; Duan J; Ma G; Zhang W; Wang Q; Hu Z
    J Mater Chem B; 2019 Apr; 7(13):2220-2225. PubMed ID: 32073581
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Elastin-mimetic protein polymers capable of physical and chemical crosslinking.
    Sallach RE; Cui W; Wen J; Martinez A; Conticello VP; Chaikof EL
    Biomaterials; 2009 Jan; 30(3):409-22. PubMed ID: 18954902
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Elastase-triggered H
    Zhou M; Qian Y; Zhu Y; Matson J
    Chem Commun (Camb); 2020 Jan; 56(7):1085-1088. PubMed ID: 31894779
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Affinity peptides protect transforming growth factor beta during encapsulation in poly(ethylene glycol) hydrogels.
    McCall JD; Lin CC; Anseth KS
    Biomacromolecules; 2011 Apr; 12(4):1051-7. PubMed ID: 21375234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.