These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 19702240)
1. Benchmark data set for in silico prediction of Ames mutagenicity. Hansen K; Mika S; Schroeter T; Sutter A; ter Laak A; Steger-Hartmann T; Heinrich N; Müller KR J Chem Inf Model; 2009 Sep; 49(9):2077-81. PubMed ID: 19702240 [TBL] [Abstract][Full Text] [Related]
2. Integration of structure-activity relationship and artificial intelligence systems to improve in silico prediction of ames test mutagenicity. Mazzatorta P; Tran LA; Schilter B; Grigorov M J Chem Inf Model; 2007; 47(1):34-8. PubMed ID: 17238246 [TBL] [Abstract][Full Text] [Related]
3. Three new consensus QSAR models for the prediction of Ames genotoxicity. Votano JR; Parham M; Hall LH; Kier LB; Oloff S; Tropsha A; Xie Q; Tong W Mutagenesis; 2004 Sep; 19(5):365-77. PubMed ID: 15388809 [TBL] [Abstract][Full Text] [Related]
4. In silico prediction of chemical Ames mutagenicity. Xu C; Cheng F; Chen L; Du Z; Li W; Liu G; Lee PW; Tang Y J Chem Inf Model; 2012 Nov; 52(11):2840-7. PubMed ID: 23030379 [TBL] [Abstract][Full Text] [Related]
5. Comparative evaluation of in silico systems for ames test mutagenicity prediction: scope and limitations. Hillebrecht A; Muster W; Brigo A; Kansy M; Weiser T; Singer T Chem Res Toxicol; 2011 Jun; 24(6):843-54. PubMed ID: 21534561 [TBL] [Abstract][Full Text] [Related]
6. Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds. Helma C; Cramer T; Kramer S; De Raedt L J Chem Inf Comput Sci; 2004; 44(4):1402-11. PubMed ID: 15272848 [TBL] [Abstract][Full Text] [Related]
7. Assessment of the sensitivity of the computational programs DEREK, TOPKAT, and MCASE in the prediction of the genotoxicity of pharmaceutical molecules. Snyder RD; Pearl GS; Mandakas G; Choy WN; Goodsaid F; Rosenblum IY Environ Mol Mutagen; 2004; 43(3):143-58. PubMed ID: 15065202 [TBL] [Abstract][Full Text] [Related]
8. Searching for an enhanced predictive tool for mutagenicity. Klopman G; Zhu H; Fuller MA; Saiakhov RD SAR QSAR Environ Res; 2004 Aug; 15(4):251-63. PubMed ID: 15370416 [TBL] [Abstract][Full Text] [Related]
9. Comparative evaluation of 11 in silico models for the prediction of small molecule mutagenicity: role of steric hindrance and electron-withdrawing groups. Ford KA; Ryslik G; Chan BK; Lewin-Koh SC; Almeida D; Stokes M; Gomez SR Toxicol Mech Methods; 2017 Jan; 27(1):24-35. PubMed ID: 27813437 [TBL] [Abstract][Full Text] [Related]
10. Applicability domains for classification problems: Benchmarking of distance to models for Ames mutagenicity set. Sushko I; Novotarskyi S; Körner R; Pandey AK; Cherkasov A; Li J; Gramatica P; Hansen K; Schroeter T; Müller KR; Xi L; Liu H; Yao X; Öberg T; Hormozdiari F; Dao P; Sahinalp C; Todeschini R; Polishchuk P; Artemenko A; Kuz'min V; Martin TM; Young DM; Fourches D; Muratov E; Tropsha A; Baskin I; Horvath D; Marcou G; Muller C; Varnek A; Prokopenko VV; Tetko IV J Chem Inf Model; 2010 Dec; 50(12):2094-111. PubMed ID: 21033656 [TBL] [Abstract][Full Text] [Related]
11. An evaluation of in-house and off-the-shelf in silico models: implications on guidance for mutagenicity assessment. Jolly R; Ahmed KB; Zwickl C; Watson I; Gombar V Regul Toxicol Pharmacol; 2015 Apr; 71(3):388-97. PubMed ID: 25656493 [TBL] [Abstract][Full Text] [Related]
12. A multiple in silico program approach for the prediction of mutagenicity from chemical structure. White AC; Mueller RA; Gallavan RH; Aaron S; Wilson AG Mutat Res; 2003 Aug; 539(1-2):77-89. PubMed ID: 12948816 [TBL] [Abstract][Full Text] [Related]
13. Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities. Valerio LG; Cross KP Toxicol Appl Pharmacol; 2012 May; 260(3):209-21. PubMed ID: 22426359 [TBL] [Abstract][Full Text] [Related]
14. In silico assessment of chemical mutagenesis in comparison with results of Salmonella microsome assay on 909 chemicals. Hayashi M; Kamata E; Hirose A; Takahashi M; Morita T; Ema M Mutat Res; 2005 Dec; 588(2):129-35. PubMed ID: 16257575 [TBL] [Abstract][Full Text] [Related]
15. Mutagenic probability estimation of chemical compounds by a novel molecular electrophilicity vector and support vector machine. Zheng M; Liu Z; Xue C; Zhu W; Chen K; Luo X; Jiang H Bioinformatics; 2006 Sep; 22(17):2099-106. PubMed ID: 16837526 [TBL] [Abstract][Full Text] [Related]
16. Development of a method to assess the informational content of structure-activity data bases. Takihi N; Zhang YP; Klopman G; Rosenkranz HS Qual Assur; 1993 Sep; 2(3):255-64. PubMed ID: 8137086 [TBL] [Abstract][Full Text] [Related]
17. Support vector machine: classifying and predicting mutagenicity of complex mixtures based on pollution profiles. Zheng W; Tian D; Wang X; Tian W; Zhang H; Jiang S; He G; Zheng Y; Qu W Toxicology; 2013 Nov; 313(2-3):151-9. PubMed ID: 23395826 [TBL] [Abstract][Full Text] [Related]
18. Derivation and validation of toxicophores for mutagenicity prediction. Kazius J; McGuire R; Bursi R J Med Chem; 2005 Jan; 48(1):312-20. PubMed ID: 15634026 [TBL] [Abstract][Full Text] [Related]
19. Identification of the structural requirements for mutagenicity by incorporating molecular flexibility and metabolic activation of chemicals I: TA100 model. Mekenyan O; Dimitrov S; Serafimova R; Thompson E; Kotov S; Dimitrova N; Walker JD Chem Res Toxicol; 2004 Jun; 17(6):753-66. PubMed ID: 15206896 [TBL] [Abstract][Full Text] [Related]
20. A novel QSAR model of Salmonella mutagenicity and its application in the safety assessment of drug impurities. Valencia A; Prous J; Mora O; Sadrieh N; Valerio LG Toxicol Appl Pharmacol; 2013 Dec; 273(3):427-34. PubMed ID: 24090816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]