These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 19702307)

  • 1. Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae.
    Lee HS; Guo J; Lemke EA; Dimla RD; Schultz PG
    J Am Chem Soc; 2009 Sep; 131(36):12921-3. PubMed ID: 19702307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetically encoded fluorescent probe in mammalian cells.
    Chatterjee A; Guo J; Lee HS; Schultz PG
    J Am Chem Soc; 2013 Aug; 135(34):12540-3. PubMed ID: 23924161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetically encoded fluorescent amino acid.
    Summerer D; Chen S; Wu N; Deiters A; Chin JW; Schultz PG
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):9785-9. PubMed ID: 16785423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simplified Protocol to Incorporate the Fluorescent Unnatural Amino Acid ANAP into Xenopus laevis Oocyte-Expressed P2X7 Receptors.
    Durner A; Nicke A
    Methods Mol Biol; 2022; 2510():193-216. PubMed ID: 35776326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantiospecific synthesis of genetically encodable fluorescent unnatural amino acid L-3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid.
    Xiang Z; Wang L
    J Org Chem; 2011 Aug; 76(15):6367-71. PubMed ID: 21732687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress toward the evolution of an organism with an expanded genetic code.
    Liu DR; Schultz PG
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):4780-5. PubMed ID: 10220370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of non-canonical amino acids into proteins in yeast.
    Wiltschi B
    Fungal Genet Biol; 2016 Apr; 89():137-156. PubMed ID: 26868890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring protein misfolding by site-specific labeling of proteins in vivo.
    Hsieh TY; Nillegoda NB; Tyedmers J; Bukau B; Mogk A; Kramer G
    PLoS One; 2014; 9(6):e99395. PubMed ID: 24915041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain.
    Chang CP; Lin G; Chen SJ; Chiu WC; Chen WH; Wang CC
    J Biol Chem; 2008 Nov; 283(45):30699-706. PubMed ID: 18755686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the anticodon in recognition of tRNA by aminoacyl-tRNA synthetases.
    Kisselev LL
    Prog Nucleic Acid Res Mol Biol; 1985; 32():237-66. PubMed ID: 3911276
    [No Abstract]   [Full Text] [Related]  

  • 11. A genetically encoded cyclobutene probe for labelling of live cells.
    Liu K; Enns B; Evans B; Wang N; Shang X; Sittiwong W; Dussault PH; Guo J
    Chem Commun (Camb); 2017 Sep; 53(76):10604-10607. PubMed ID: 28902227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general approach for the generation of orthogonal tRNAs.
    Wang L; Schultz PG
    Chem Biol; 2001 Sep; 8(9):883-90. PubMed ID: 11564556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method to site-specifically introduce methyllysine into proteins in E. coli.
    Ai HW; Lee JW; Schultz PG
    Chem Commun (Camb); 2010 Aug; 46(30):5506-8. PubMed ID: 20571694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene for yeast glutamine tRNA synthetase encodes a large amino-terminal extension and provides a strong confirmation of the signature sequence for a group of the aminoacyl-tRNA synthetases.
    Ludmerer SW; Schimmel P
    J Biol Chem; 1987 Aug; 262(22):10801-6. PubMed ID: 3301841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts.
    Lee CP; RajBhandary UL
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11378-82. PubMed ID: 1763051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific incorporation of unnatural amino acids into proteins by cell-free protein synthesis.
    Ozawa K; Loh CT
    Methods Mol Biol; 2014; 1118():189-203. PubMed ID: 24395417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adding new chemistries to the genetic code.
    Liu CC; Schultz PG
    Annu Rev Biochem; 2010; 79():413-44. PubMed ID: 20307192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives.
    Wang YS; Russell WK; Wang Z; Wan W; Dodd LE; Pai PJ; Russell DH; Liu WR
    Mol Biosyst; 2011 Mar; 7(3):714-7. PubMed ID: 21234492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similarities and differences in tRNA identity between Escherichia coli and Saccharomyces cerevisiae: evolutionary conservation and divergence.
    Nameki N; Asahara H; Tamura K; Himeno H; Hasegawa T; Shimizu M
    Nucleic Acids Symp Ser; 1995; (34):205-6. PubMed ID: 8841624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deeper understanding of the spontaneous derepression of the URA3 gene in MaV203 Saccharomyces cerevisiae and its implications for protein engineering and the reverse two-hybrid system.
    Cortens D; Hansen R; Graulus GJ; Steen Redeker E; Adriaensens P; Guedens W
    Yeast; 2019 Dec; 36(12):701-710. PubMed ID: 31389616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.